Do you want to publish a course? Click here

Multiple resonances of a moving, oscillating surface disturbance on a shear current

59   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider waves radiated by a disturbance of oscillating strength moving at constant velocity along the free surface of a shear flow which, when undisturbed, has uniform horizontal vorticity of magnitude $S$. When no current is present the problem is a classical one and much studied, and in deep water a resonance is known to occur when $tau=|boldsymbol{V}|omega_0/g$ equals the critical value $1/4$ ($boldsymbol{V}$: velocity of disturbance, $omega_0$: oscillation frequency, $g$: gravitational acceleration). We show that the presence of the sub-surface shear current can change this picture radically. Not only does the resonant value of $tau$ depend strongly on the angle between $boldsymbol{V}$ and the currents direction and the shear-Froude number $mathrm{Frs}=|boldsymbol{V}|S/g$; when $mathrm{Frs}>1/3$, multiple resonant values --- as many as $4$ --- can occur for some directions of motion. At sufficiently large values of $mathrm{Frs}$, the smallest resonance frequency tends to zero, representing the phenomenon of critical velocity for ship waves. We provide a detailed analysis of the dispersion relation for the moving, oscillating disturbance, in both finite and infinite water depth, including for the latter case an overview of the different far-field waves which exist in different sectors of wave vector space under different conditions. Owing to the large number of parameters, a detailed discussion of the structure of resonances is provided for infinite depth only, where analytical results are available.



rate research

Read More

We investigate analytically the linearized water wave radiation problem for an oscillating submerged point source in an inviscid shear flow with a free surface. A constant depth is taken into account and the shear flow increases linearly with depth. The surface velocity relative to the source is taken to be zero, so that Doppler effects are absent. We solve the linearized Euler equations to calculate the resulting wave field as well as its far-field asymptotics. For values of the Froude number $F^2=omega^2 D/g$ ($omega$: oscillation frequency, $D$ submergence depth) below a resonant value $F^2_text{res}$ the wave field splits cleanly into separate contributions from regular dispersive propagating waves and non-dispersive critical waves resulting from a critical layer-like street of flow structures directly downstream of the source. In the sub-resonant regime the regular waves behave like sheared ring waves while the critical layer wave forms a street of a constant width of order $Dsqrt{S/omega}$ ($S$ is the shear flow vorticity) and is convected downstream at the fluid velocity at the depth of the source. When the Froude number approaches its resonant value, the the downstream critical and regular waves resonate, producing a train of waves of linearly increasing amplitude contained within a downstream wedge.
We report on progress on the free surface flow in the presence of submerged oscillating line sources (2D) or point sources (3D) when a simple shear flow is present varying linearly with depth. Such sources are in routine use as Green functions in the realm of potential theory for calculating wave-body interactions, but no such theory exists in for rotational flow. We solve the linearized problem in 2D and 3D from first principles, based on the Euler equations, when the sources are at rest relative to the undisturbed surface. Both in 2D and 3D a new type of solution appears compared to irrotational case, a critical layer-like flow whose surface manifestation (wave) drifts downstream from the source at the velocity of the flow at the source depth. We analyse the additional vorticity in light of the vorticity equation and provide a simple physical argument why a critical layer is a necessary consequence of Kelvins circulation theorem. In 3D a related critical layer phenomenon occurs at every depth, whereby a street of counter-rotating vortices in the horizontal plane drift downstream at the local flow velocity.
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulation of the fluid velocity on the free surface. The equations for free-surface motion we derive here are closed and they are not restricted to potential flow. Hence, true wave-current interaction dynamics can occur. In particular, the Kelvin-Noether theorem demonstrates that wave activity can induce fluid circulation and vorticity dynamics on the free surface. The wave-current interaction equations introduced here open new vistas for both the deterministic and stochastic analysis of nonlinear waves on free surfaces.
We study the waves and wave-making forces acting on ships travelling on currents which vary as a function of depth. Our concern is realism; we consider a real current profile from the Columbia River, and model ships with dimensions and Froude numbers typical of three classes of vessels operating in these waters. To this end we employ the most general theory of waves from free-surface sources on shear current to date, which we derive and present here. Expressions are derived for ship waves which satisfy an arbitrary dispersion relation and are generated by a wave source acting on the free surface, with the sources shape and time-dependence is also being arbitrary. Practical calculation procedures for numerically calculating dispersion on a shear current which may vary arbitrarily with depth both in direction and magnitude, are indicated. For ships travelling at oblique angle to a shear-current, the ship wave pattern is asymmetrical, and wave-making radiation forces have a lateral component in addition to the conventional wave resistance, the sternward component. No corresponding lateral force exists in the absence of shear. We consider the dependence of wave resistance and lateral force for upstream, downstream and cross-stream motion on the Columbia River current, both in steady motion and during two different maneouvres: a ship suddenly set in motion, and a ship turning through 360 deg. We find that for smaller ships (tugboats, fishing-boats) the wave resistance can differ drastically from that in quiescent water, and depends strongly on Froude number and direction of motion. For Froude numbers typical of such boats, wave resistance can vary by a factor 3 between upstream and downstream motion, and the strong Froude number dependence is made more complicated by interference effects. The lateral radiation force ... [abstract truncated due to ArXiVs space restrictions]
96 - J. Mougel , S. Michelin 2020
We investigate the effects of a nearby free surface on the stability of a flexible plate in axial flow. Confinement by rigid boundaries is known to affect flag flutter thresholds and fluttering dynamics significantly, and this work considers the effects of a more general confinement involving a deformable free surface. To this end, a local linear stability is proposed for a flag in axial uniform flow and parallel to a free surface, using one-dimensional beam and potential flow models to revisit this classical fluid-structure interaction problem. The physical behaviour of the confining free surface is characterized by the Froude number, corresponding to the ratio of the incoming flow velocity to that of the gravity waves. After presenting the simplified limit of infinite span (i.e. two-dimensional problem), the results are generalized to include finite-span and lateral confinement effects. In both cases, three unstable regimes are identified for varying Froude number. Rigidly-confined flutter is observed for low Froude number, i.e. when the free surface behaves as a rigid wall, and is equivalent to the classical problem of the confined flag. When the flow and wave velocities are comparable, a new instability is observed before the onset of flutter (i.e. at lower reduced flow speed) and results from the resonance of a structural bending wave and one of the fundamental modes of surface gravity waves. Finally, for large Froude number (low effect of gravity), flutter is observed with significant but passive deformation of the free surface in response of the flags displacement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا