Theory of electron-plasmon coupling in semiconductors


Abstract in English

The ability to manipulate plasmons is driving new developments in electronics, optics, sensing, energy, and medicine. Despite the massive momentum of experimental research in this direction, a predictive quantum-mechanical framework for describing electron-plasmon interactions in real materials is still missing. Here, starting from a many-body Greens function approach, we develop an ab initio approach for investigating electron-plasmon coupling in solids. As a first demonstration of this methodology, we show that electron-plasmon scattering is the primary mechanism for the cooling of hot carriers in doped silicon, it is key to explain measured electron mobilities at high doping, and it leads to a quantum zero-point renormalization of the band gap in agreement with experiment.

Download