We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical modeling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum rules showing the accuracy and applicability of the present approach. Our data are also compared with previous optical data from other sources.
We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m-HfO$_2$) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermis Golden Rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m-HfO$_2$ energy loss spectrum. The sole plasmon occurs between 13-16 eV, although the peaks $sim$28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5$p$ and 4$f$) on the energy-loss spectrum, and find that the inclusion of transitions from the 4$f$ band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using a $GW$-derived electronic structure to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf $4f$ shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.
We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with those obtained for the corresponding layered structures, i.e. the graphene and hexagonal BN sheets. In particular, we focus on the role of depolarization effects, anisotropies and interactions in the excited states. We show that already the random phase approximation reproduces well the main features of the spectra when crystal local field effects are correctly included, and discuss to which extent the calculations can be further simplified by extrapolating results obtained for the layered systems to results expected for the tubes. The present results are relevant for the interpretation of data obtained by recent experimental tools for nanotube characterization such as optical and fluorescence spectroscopies as well as polarized resonant Raman scattering spectroscopy. We also address electron energy loss spectra in the small-q momentum transfer limit. In this case, the interlayer and intertube interactions play an enhanced role with respect to optical spectroscopy.
The spatial distributions of anti-bonding $pi^ast$ and $sigma^ast$ states in epitaxial graphene multilayers are mapped using electron energy-loss spectroscopy in a scanning transmission electron microscope. Inelastic channeling simulations validate the interpretation of the spatially-resolved signals in terms of electronic orbitals, and demonstrate the crucial effect of the material thickness on the experimental capability to resolve the distribution of unoccupied states. This work illustrates the current potential of core-level electron energy-loss spectroscopy towards the direct visualization of electronic orbitals in a wide range of materials, of huge interest to better understand chemical bonding among many other properties at interfaces and defects in solids.
Experimental valence electron energy loss spectra (VEELS), up to the Li K edge, obtained on different phases of LixFePO4 are compared to first principles calculations using the density functional code WIEN2k. In the 4-7 eV range, a large peak is identified in the FePO4 spectrum, but is absent in LiFePO4, which could allow the easy formation of energy filtered images. The intensity of this peak, non sensitive to the precise orientation of the crystal, is large enough to rapidly determine existing phases in the sample and permit future dynamical studies. Solid solution and two-phases regions are also differentiated using Fe M2,3 / Li K edges.
The two-dimensional electron gas occurring between the band insulators SrTiO$_3$ and LaAlO$_3$ continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO$_3$ layer at the growth temperature (around 800 $^o$C) in oxygen (pressure around $5times 10^{-5}$ mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO$_2$-rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
H. Xu
,B. Da
,J. Toth
.
(2016)
.
"Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra"
.
Huan Xu Huan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا