Do you want to publish a course? Click here

Thermal and magnetic phase transition properties of a binary alloy spherical nanoparticle: A Monte Carlo simulation study

82   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used the Monte Carlo (MC) simulation method with Metropolis algorithm to study the finite temperature phase transition properties of a binary alloy spherical nanoparticle with radius $r$ of the type $A_{p}B_{1-p}$. The system consists of two different species of magnetic components, namely, $A$ and $B$, and the components of the system have been selected $A$ and $B$ to be as $sigma = 1/2$ and $S=1$, respectively. A complete picture of phase diagrams, total magnetizations and susceptibilities in related planes have been presented, and the main roles of the radius of nanoparticle, active concentration value of type-$A$ atoms as well as other system parameters on the thermal and magnetic phase transition features of the considered system have been discussed in detail. Our MC investigations clearly show that it is possible to control the critical characteristic behaviors of the system with the help of adjustable Hamiltonian parameters.



rate research

Read More

We present Monte Carlo (MC) simulation studies of phase separation in binary (AB) mixtures with bond-disorder that is introduced in two different ways: (i) at randomly selected lattice sites and (ii) at regularly selected sites. The Ising model with spin exchange (Kawasaki) dynamics represents the segregation kinetics in conserved binary mixtures. We find that the dynamical scaling changes significantly by varying the number of disordered sites in the case where bond-disorder is introduced at the randomly selected sites. On the other hand, when we introduce the bond-disorder in a regular fashion, the system follows the dynamical scaling for the modest number of disordered sites. For higher number of disordered sites, the evolution morphology illustrates a lamellar pattern formation. Our MC results are consistent with the Lifshitz-Slyozov (LS) power-law growth in all the cases.
We perform Monte-Carlo simulations to study the Bernoulli ($p$) bond percolation on the enhanced binary tree which belongs to the class of nonamenable graphs with one end. Our numerical results show that the system has two different percolation thresholds $p_{c1}$ and $p_{c2}$. All the points in the intermediate phase $(p_{c1} < p < p_{c2})$ are critical and there exist infinitely many infinite clusters in the intermediate phase. In this phase the corresponding fractal exponent continuously increases with $p$ from zero to unity.
134 - M. Rapini , R. A. Dias , 2010
Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long-range dipolar interactions. It is believed that the phase diagram presents three phases: An ordered ferromagnetic phase I, a phase characterized by a change from out-of-plane to in-plane in the magnetization II, and a high-temperature paramagnetic phase III. It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phases II and III is of the BKT type.
P.B. Chakraborty {it et al.}, Phys. Rev. B {bf 70}, 144411 (2004)) study of the LiHoF$_4$ Ising magnetic material in an external transverse magnetic field $B_x$ show a discrepancy with the experimental results, even for small $B_x$ where quantum fluctuations are small. This discrepancy persists asymptotically close to the classical ferromagnet to paramagnet phase transition. In this paper, we numerically reinvestigate the temperature $T$, versus transverse field phase diagram of LiHoF$_4$ in the regime of weak $B_x$. In this regime, starting from an effective low-energy spin-1/2 description of LiHoF$_4$, we apply a cumulant expansion to derive an effective temperature-dependent classical Hamiltonian that incorporates perturbatively the small quantum fluctuations in the vicinity of the classical phase transition at $B_x=0$. Via this effective classical Hamiltonian, we study the $B_x-T$ phase diagram via classical Monte Carlo simulations. In particular, we investigate the influence on the phase diagram of various effects that may be at the source of the discrepancy between the previous QMC results and the experimental ones. For example, we consider two different ways of handling the long-range dipole-dipole interactions and explore how the $B_x-T$ phase diagram is modified when using different microscopic crystal field Hamiltonians. The main conclusion of our work is that we fully reproduce the previous QMC results at small $B_x$. Unfortunately, none of the modifications to the microscopic Hamiltonian that we explore are able to provide a $B_x-T$ phase diagram compatible with the experiments in the small semi-classical $B_x$ regime.
The structural, electronic and magnetic properties of Fe7S8 material have been studied within the framework of the ab-initio calculations, the mean field approximation (MFA) and Monte Carlo simulation (MCS). Our study shows that two forms of the iron atoms, Fe2+ with spin S=2, and Fe3+ with spin {sigma}=5/2 are the most probable configurations. A mixed Ising model with ferromagnetic spin coupling between Fe2+ and Fe3+ ions and between Fe3+ and Fe3+ ions, and with antiferromagnetic spin coupling between Fe2+ ions of adjacent layers has been used to study the magnetic properties of this compound. We demonstrated that the magnetic phase transition can be either of the first or of the second order, depending on the value of the exchange interaction and crystal field. The presence of vacancies in every second iron layer leads to incomplete cancellation of magnetic moments, hence to the emergence of the ferrimagnetism. Anomalies in the magnetization behavior have been found and compared with the experimental results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا