Do you want to publish a course? Click here

Observational Confirmation of a Link Between Common Envelope Binary Interaction and Planetary Nebula Shaping

91   0   0.0 ( 0 )
 Added by Todd Hillwig
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A current issue in the study of planetary nebulae with close binary central stars is the extent to which the binaries affect the shaping of the nebulae. Recent studies have begun to show a high coincidence rate between nebulae with large-scale axial or point symmetries and close binary stars. In addition, combined binary-star and spatio-kinematic modeling of the nebulae have demonstrated that all of the systems studied to date appear to have their central binary axis aligned with the primary axis of the nebula. Here we add two more systems to the list, the central stars and nebulae of NGC 6337 and Sp 1. We show both systems to be low inclination, with their binary axis nearly aligned with our line-of-sight. Their inclinations match published values for the inclinations of their surrounding nebulae. Including these two systems with the existing sample statistically demonstrates a direct link between the central binary and the nebular morphology. In addition to the systems inclinations we give ranges for other orbital parameters from binary modeling, including updated orbital periods for the binary central stars of NGC 6337 and Sp 1.



rate research

Read More

The morphology of planetary nebulae emerging from the common envelope phase of binary star evolution is investigated. Using initial conditions based on the numerical results of hydrodynamical simulations of the common envelope phase it is found that the shapes and sizes of the resulting nebula are very sensitive to the effective temperature of the remnant core, the mass-loss rate at the onset of the common envelope phase, and the mass ratio of the binary system. These parameters are related to the efficiency of the mass ejection after the spiral-in phase, the stellar evolutionary phase (i.e., RG, AGB or TP-AGB), and the degree of departure from spherical symmetry in the stellar wind mass loss process itself respectively. It is found that the shapes are mostly bipolar in the early phase of evolution, but can quickly transition to elliptical and barrel-type shapes. Solutions for nested lobes are found where the outer lobes are usually bipolar and the inner lobes are elliptical, bipolar or barrel-type, a result due to the flow of the photo-evaporated gas from the equatorial region. It is found that the lobes can be produced without the need for two distinct mass ejection events. In all the computations, the bulk of the mass is concentrated in the orbital or equatorial plane, in the form of a large toroid, which can be either neutral (early phases) or photoionized (late phases), depending of the evolutionary state of the system.
We present a detailed study of the binary central star of the planetary nebula ETHOS 1 (PN G068.1+11.0). Simultaneous modelling of light and radial velocity curves reveals the binary to comprise a hot and massive pre-white-dwarf with an M-type main-sequence companion. A good fit to the observations was found with a companion that follows expected mass-temperature-radius relationships for low-mass stars, indicating that despite being highly irradiated it is consistent with not being significantly hotter or larger than a typical star of the same mass. Previous modelling indicated that ETHOS 1 may comprise the first case where the orbital plane of the central binary does not lie perpendicular to the nebular symmetry axis, at odds with the expectation that the common envelope is ejected in the orbital plane. We find no evidence for such a discrepancy, deriving a binary inclination in agreement with that of the nebula as determined by spatio-kinematic modelling. This makes ETHOS 1 the ninth post-common-envelope planetary nebula in which the binary orbital and nebular symmetry axes have been shown to be aligned, with as yet no known counter-examples. The probability of finding such a correlation by chance is now less than 0.00002%.
The Chandra X-ray Observatory has detected relatively hard X-ray emission from the central stars of several planetary nebulae (PNe). A subset have no known late-type companions, making it very difficult to isolate which of several competing mechanisms may be producing the X-ray emission. The central star of NGC 2392 is one of the most vexing members, with substantial indirect evidence for a hot white dwarf (WD) companion. Here we report on the results of a radial velocity (RV) monitoring campaign of its central star with the HERMES echelle spectrograph of the Flemish 1.2 m Mercator telescope. We discover a single-lined spectroscopic binary with an orbital period of $1.902208pm0.000013$ d and a RV semi-amplitude of $9.96pm0.13$ km/s. The high degree of nebula ionisation requires a WD companion ($Mgtrsim0.6 M_odot$), which the mass-function supports at orbital inclinations $lesssim$7 deg, in agreement with the nebula orientation of 9 deg. The hard component of the X-ray spectrum may be explained by the companion accreting mass from the wind of the Roche lobe filling primary, while the softer component may be due to colliding winds. A companion with a stronger wind than the primary could produce the latter and would be consistent with models of the observed diffuse X-ray emission detected in the nebula. The diffuse X-rays may also be powered by the jets of up to 180 km/s and active accretion would imply that they could be the first active jets of a post-common-envelope PN, potentially making NGC 2392 an invaluable laboratory to study jet formation physics. The 1.9 d orbital period rules out a double-degenerate merger leading to a Type Ia supernova and the weak wind of the primary likely also precludes a single-degenerate scenario. We suggest that a hard X-ray spectrum, in the absence of a late-type companion, could be a powerful tool to identify accreting WD companions.
Magnetic fields of order $10^1-10^2$ gauss that are present in the envelopes of red giant stars are ejected in common envelope scenarios. These fields could be responsible for the launching of magnetically driven winds in proto-planetary nebulae. Using 2D simulations of magnetized winds interacting with an envelope drawn from a 3D simulation of the common envelope phase, we study the confinement, heating, and magnetic field development of post-common envelope winds. We find that the ejected magnetic field can be enhanced via compression by factors up to $sim 10^4$ in circumbinary disks during the self-regulated phases. We find values for the kinetic energy of the order of $10^{46}$ erg that explain the large values inferred in proto-planetary nebula outflows. We show that the interaction of the formed circumbinary disk with a spherical, stellar wind produces a tapered flow that is almost indistinguishable from an imposed tapered flow. This increases the uncertainty of the origin of proto-planetary nebula winds, which could be either stellar, circumstellar (stellar accretion disk), circumbinary (circumbinary accretion disk), or a combination of all three. Within this framework, a scenario for self-collimation of weakly magnetized winds is discussed, which can explain the two objects where the collimation process is observationally resolved, HD 101584 and Hen 3-1475. An explanation for the equatorial, molecular hydrogen emission in CRL 2688 is also presented.
We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to internal torques produced by a weak poloidal magnetic field. The first wind can be described as a wide jet, with an average mass-loss rate of $sim 1.3 times 10^{-7}$ Moy and a maximum radial velocity of $sim 230$ kms. The outflow has a half-opening angle of $sim 20^{circ}$. Narrow jets are also formed intermittently with velocities up to 3,000 kms, with mass-loss rates of $sim 6 times 10^{-12} $ Moy during short periods of time. The second wind can be described as a wide X-wind, with an average mass-loss rate of $sim 1.68 times 10^{-7}$ Moy and a velocity of $sim 30$ kms. A narrow jet is also formed with a velocity of 250 kms, and a mass-loss rates of $sim 10^{-12} $ Moy. The computed jets are used to provide inflow boundary conditions for simulations of proto-planetary nebulae. The wide jet evolves into a molecular collimated outflow within a few astronomical units, producing proto-planetary nebulae with bipolar, elongated shapes, whose kinetic energies reach $sim 4 times 10^{45}$ erg at 1,000 years. Similarities with observed features in W43A, OH231.8+4.2, and Hen 3-1475 are discussed. The computed wide X-wind produces proto-planetary nebulae with slower expansion velocities, with bipolar and elliptical shapes, and possible starfish type and quadrupolar morphology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا