Do you want to publish a course? Click here

Wigner law for matrices with dependent entries - a perturbative approach

204   0   0.0 ( 0 )
 Added by Adrian Tanasa
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that Wigner semi-circle law holds for Hermitian matrices with dependent entries, provided the deviation of the cumulants from the normalised Gaussian case obeys a simple power law bound in the size of the matrix. To establish this result, we use replicas interpreted as a zero-dimensional quantum field theoretical model whose effective potential obey a renormalisation group equation.



rate research

Read More

188 - Albert Much 2018
By using the quasi-determinant the construction of Gelfand et al. leads to the inverse of a matrix with noncommuting entries. In this work we offer a new method that is more suitable for physical purposes and motivated by deformation quantization, where our constructed algorithm emulates the commutative case and in addition gives corrections coming from the noncommutativity of the entries. Furthermore, we provide an equivalence of the introduced algorithm and the construction via quasi-determinants.
We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.
The celebrated elliptic law describes the distribution of eigenvalues of random matrices with correlations between off-diagonal pairs of elements, having applications to a wide range of physical and biological systems. Here, we investigate the generalization of this law to random matrices exhibiting higher-order cyclic correlations between $k$-tuples of matrix entries. We show that the eigenvalue spectrum in this ensemble is bounded by a hypotrochoid curve with $k$-fold rotational symmetry. This hypotrochoid law applies to full matrices as well as sparse ones, and thereby holds with remarkable universality. We further extend our analysis to matrices and graphs with competing cycle motifs, which are described more generally by polytrochoid spectral boundaries.
We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so that each elementary piece is a map that may have arbitrary even face degrees. In the induced statistics, these maps are drawn according to a Boltzmann distribution whose parameters (the face weights) are determined by a fixed point condition. In particular, we show that the dense and dilute critical points of the O(n) model correspond to bipartite maps with large faces (i.e. whose degree distribution has a fat tail). The re-expression of the fixed point condition in terms of linear integral equations allows us to explore the phase diagram of the model. In particular, we determine this phase diagram exactly for the simplest version of the model where the loops are rigid. Several generalizations of the model are discussed.
We consider ensembles of real symmetric band matrices with entries drawn from an infinite sequence of exchangeable random variables, as far as the symmetry of the matrices permits. In general the entries of the upper triangular parts of these matrices are correlated and no smallness or sparseness of these correlations is assumed. It is shown that the eigenvalue distribution measures still converge to a semicircle but with random scaling. We also investigate the asymptotic behavior of the corresponding $ell_2$-operator norms. The key to our analysis is a generalisation of a classic result by de Finetti that allows to represent the underlying probability spaces as averages of Wigner band ensembles with entries that are not necessarily centred. Some of our results appear to be new even for such Wigner band matrices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا