Do you want to publish a course? Click here

Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation

305   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the stellar surface mass density {it vs.} gas metallicity ($Sigma_*-Z$) relation for more than 500,000 spatially-resolved star-forming resolution elements (spaxels) from a sample of 653 disk galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of four in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disk galaxies: their global mass-metallicity relationship {it and} their radial metallicity gradients. We also find that the $Sigma_* - Z$ relation is largely independent of the galaxys total stellar mass and specific star-formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disk galaxies.



rate research

Read More

By means of the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of an unprecedentedly large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing), though for a given mass, the global MGHs segregate by color, specific star formation rate (sSFR), and morphological type. From the inferred radial mean MGHs, we find that at the late evolutionary stages (or for fractions of assembled mass larger than ~ 80%), the innermost regions formed stars on average earlier than the outermost ones (inside-out). At earlier epochs, when the age resolution of the method becomes poor, the mass assembly seems to be spatially homogeneous or even in the outside-in mode, specially for the red/quiescent/early-type galaxies. The innermost MGHs are in general more regular (less scatter around the mean) than the outermost ones. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead their radial MGHs are very diverse most of the time, with periods of outside- in and inside-out modes (or strong radial migration), suggesting this an episodic SF history. Blue/star-forming/late-type galaxies present on average a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching, and radial migration. We discuss also on the uncertainties and biases of the fossil record method and how they could affect our results.
Gas-phase abundances and abundance gradients provide much information on past stellar generations, and are powerful probes of how galaxies evolve. Gas abundance gradients in galaxies have been studied as functions of galaxies mass and size individually, but have largely not been considered across the galaxy mass--size plane. Thus, we investigate gas-phase abundance gradients across this plane, using a sample of over 1000 galaxies selected from the MApping Nearby Galaxies at APO (MaNGA) spectroscopic survey. We find that gradients vary systematically such that above $10^{10}M_{odot}$, smaller galaxies display flatter gradients than larger galaxies at a given stellar mass. This mass--size behaviour cannot be explained by instrumental effects, nor is it simply a reflection of known trends between gradients and morphology. We explore multiple possibilities for a physical origin for this pattern, though further work is needed to establish a firm physical interpretation.
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the SDSS-IV MaNGA survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius ($rm R_e$), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with $rm log(M_star/M_odot) = 9.0$ but exhibiting slopes as steep as -0.14 dex $rm R_e^{-1}$ at $rm log(M_star/M_odot) = 10.5$ (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample ($rm R > 1.5 ~R_e$), but a flattening is observed in the central regions ($rm R < 1~ R_e$). In the outer regions ($rm R > 2.0 ~R_e$) we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.
Star formation rate density, $Sigma_{rm SFR}$, has shown a remarkable correlation with both components of the baryonic mass at kpc scales (i.e., the stellar mass density, and the molecular gas mass density; $Sigma_{ast}$, and $Sigma_{rm mol}$, respectively) for galaxies in the nearby Universe. In this study we propose an empirical relation between $Sigma_{rm SFR}$ and the baryonic mass surface density ($Sigma_{rm b}$ =$Sigma_{rm mol,Av}$ + $Sigma_{ast}$; where $Sigma_{rm mol,Av}$ is the molecular gas density derived from the optical extinction, Av) at kpc scales using the spatially-resolved properties of the MaNGA survey - the largest sample of galaxies observed via Integral Field Spectroscopy (IFS, $sim$ 8400 objects). We find that $Sigma_{rm SFR}$ tightly correlates with $Sigma_{rm b}$. Furthermore, we derive an empirical relation between the $Sigma_{rm SFR}$ and a second degree polynomial of $Sigma_{rm b}$ yielding a one-to-one relation between these two observables. Both, $Sigma_{rm b}$ and its polynomial form show a stronger correlation and smaller scatter with respect to $Sigma_{rm SFR}$ than the relations derived using the individual components of $Sigma_{rm b}$. Our results suggest that indeed these three parameters are physically correlated, suggesting a scenario in which the two components of the baryonic mass regulate the star-formation activity at kpc scales.
We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius in arcsecs, $mathrm{R_{eff}}$ ) using a heterogeneous set of ten abundance calibrators. Besides scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or the sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with an scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا