Do you want to publish a course? Click here

One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

109   0   0.0 ( 0 )
 Added by Tsunehide Kuroki
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.



rate research

Read More

180 - Tsunehide Kuroki 2020
In the previous papers, it is pointed out that a supersymmetric double-well matrix model corresponds to a two-dimensional type IIA superstring theory on a Ramond-Ramond background at the level of correlation functions. This was confirmed by agreement between their planar correlation functions. The supersymmetry in the matrix model corresponds to the target space supersymmetry and it is shown to be spontaneously broken by nonperturbative effect. Furthermore, in the matrix model we computed one-point functions of single-trace operators to all order of genus expansion in its double scaling limit. We found that this expansion is stringy and not Borel summable and hence there arises an ambiguity in applying the Borel resummation technique. We confirmed that resurgence works here, namely this ambiguity in perturbative series in a zero-instanton sector is exactly canceled by another ambiguity in a one-instanton sector obtained by instanton calculation. In this paper we extend this analysis and study resurgence structure of the two-point functions of the single trace operators. By using results in the random matrix theory, we derive two-point functions at arbitrary genus and see that the perturbative series in the zero-instanton sector again has an ambiguity. We find that the two-point functions inevitably have logarithmic singularity even at higher genus. In this derivation we obtain a new result of the two-point function expressed by the one-point function at the leading order in the soft-edge scaling limit of the random matrix theory. We also compute an ambiguity in the one-instanton sector by using the Airy kernel, and confirm that ambiguities in both sectors cancel each other at the leading order in the double scaling limit. We thus clarify resurgence structure of the two-point functions in the supersymmetric double-well matrix model.
In the previous papers, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. Furthermore, in the matrix model we computed one-point functions of single-trace operators to all orders of genus expansion in its double scaling limit, and found that the large-order behavior of this expansion is stringy and not Borel summable. In this paper, we discuss resurgence structure of these one-point functions and see cancellations of ambiguities in their trans-series. More precisely, we compute both series of ambiguities arising in a zero-instanton sector and in a one-instanton sector, and confirm how they cancel each other. In case that the original integration contour is a finite interval not passing through a saddle point, we have to choose an appropriate integration path in order for resurgence to work.
166 - R. DAuria , P. Fre , P. A. Grassi 2008
We derive the Free Differential Algebra for type IIA supergravity in 10 dimensions in the string frame. We provide all fermionic terms for all curvatures. We derive the Green-Schwarz sigma model for type IIA superstring based on the FDA construction and we check its invariance under kappa-symmetry. Finally, we derive the pure spinor sigma model and we check the BRST invariance. The present derivation has the advantage that the resulting sigma model is constructed in terms of the superfields appearing in the FDA and therefore one can directly relate a supergravity background with the corresponding sigma model. The complete explicit form of the BRST transformations is given and some new pure spinor constraints are obtained. Finally, the explicit form of the action is given.
136 - K. Benakli , M. D. Goodsell 2008
We compute the two-point functions for chiral matter states in toroidal intersecting D6-brane models. In particular, we provide the techniques to calculate Moebius strip diagrams including the worldsheet instanton contribution.
We study tree level one-point functions of non-protected scalar operators in the defect CFT, based on N=4 SYM, which is dual to the SO(5) symmetric D3-D7 probe brane system with non-vanishing instanton number. Whereas symmetries prevent operators from the SU(2) and SU(3) sub-sectors from having non-vanishing one-point functions, more general scalar conformal operators, which in particular constitute Bethe eigenstates of the integrable SO(6) spin chain, are allowed to have non-trivial one-point functions. For a series of operators with a small number of excitations we find closed expressions in terms of Bethe roots for these one-point functions, valid for any value of the instanton number. In addition, we present some numerical results for operators with more excitations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا