No Arabic abstract
We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe2(As0.7P0.3)2 superconductor (Tc = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2 stem from antiferromagnetic (AF) ordering wave vector QAF= (1/-1,0) and peaks near zone boundary at (1/-1,1/-1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe2(As0.7P0.3)2form a resonance in the superconducting state and high-energy spin excitations now peaks around 220 meV near (1/-1,1/-1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3)2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.
We use inelastic neutron scattering to systematically investigate the Ni-doping evolution of the low-energy spin excitations in BaFe2-xNixAs2 spanning from underdoped antiferromagnet to overdoped superconductor (0.03< x < 0.18). In the undoped state, the low-energy (<80 meV) spin waves of BaFe2As2 form transversely elongated ellipses in the [H, K] plane of the reciprocal space. Upon Ni-doping, the c-axis magnetic exchange coupling is rapidly suppressed and the momentum distribution of spin excitations in the [H, K] plane is enlarged in both the transverse and longitudinal directions with respect to the in-plane AF ordering wave vector of the parent compound. As a function of increasing Ni-doping x, the spin excitation widths increase linearly but with a larger rate along the transverse direction. These results are in general agreement with calculations of dynamic susceptibility based on the random phase approximation (RPA) in an itinerant electron picture. For samples near optimal superconductivity at x= 0.1, a neutron spin resonance appears in the superconducting state. Upon further increasing the electron-doping to decrease the superconducting transition temperature Tc, the intensity of the low-energy magnetic scattering decreases and vanishes concurrently with vanishing superconductivity in the overdoped side of the superconducting dome. Comparing with the low-energy spin excitations centered at commensurate AF positions for underdoped and optimally doped materials (x<0.1), spin excitations in the over-doped side (x=0.15) form transversely incommensurate spin excitations, consistent with the RPA calculation. Therefore, the itinerant electron approach provides a reasonable description to the low-energy AF spin excitations in BaFe2-xNixAs2.
Superconductivity (SC) in the Ba-122 family of iron-based compounds can be controlled by aliovalent or isovalent substitutions, applied external pressure, and strain, the combined effects of which are sometimes studied within the same sample. Most often, the result is limited to a shift of the SC dome to different doping values. In a few cases, the maximum SC transition at optimal doping can also be enhanced. In this work, we study the combination of charge doping together with isovalent P substitution and strain by performing ionic gating experiments on BaFe$_2$(As$_{0.8}$P$_{0.2}$)$_2$ ultrathin films. We show that the polarization of the ionic gate induces modulations to the normal-state transport properties that can be mainly ascribed to surface charge doping. We demonstrate that ionic gating can only shift the system away from the optimal conditions, as the SC transition temperature is suppressed by both electron and hole doping. We also observe a broadening of the resistive transition, which suggests that the SC order parameter is modulated nonhomogeneously across the film thickness, in contrast with earlier reports on charge-doped standard BCS superconductors and cuprates.
Heavily electron-doped iron-selenide (HEDIS) high-transition-temperature (high-$T_{rm{c}}$) superconductors, which have no hole Fermi pockets, but have a notably high $T_{rm{c}}$, have challenged the prevailing $s$$_pm$ pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in HEDIS remains unclear. Here, we used neutron scattering to study the spin excitations of the HEDIS material Li$_{0.8}$Fe$_{0.2}$ODFeSe ($T_{rm{c}}$ = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding ($pi$, $pi$) at $sim$ 21 meV. As the energy increased, the spin excitations assumed a diamond shape, and they dispersed outward until the energy reached $sim$ 60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near ($pi$, $pi$) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high $T_{rm{c}}$ in these materials.
Magnetic measurements on optimally doped single crystals of BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ ($xapprox0.35$) with magnetic fields applied along different crystallographic axes were performed under pressure, enabling the pressure evolution of coherence lengths and the anisotropy factor to be followed. Despite a decrease in the superconducting critical temperature, our studies reveal that the superconducting properties become more anisotropic under pressure. With appropriate scaling, we directly compare these properties with the values obtained for BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ as a function of phosphorus content.
Understanding the magnetic excitations in high-transition temperature (high-$T_c$) copper oxides is important because they may mediate the electron pairing for superconductivity. By determining the wavevector ({bf Q}) and energy ($hbaromega$) dependence of the magnetic excitations, one can calculate the change in the exchange energy available to the superconducting condensation energy. For the high-$T_c$ superconductor YBa$_2$Cu$_3$O$_{6+x}$, the most prominent feature in the magnetic excitations is the resonance. Although the resonance has been suggested to contribute a major part of the superconducting condensation, the accuracy of such an estimation has been in doubt because the resonance is only a small portion of the total magnetic scattering. Here we report an extensive mapping of magnetic excitations for YBa$_2$Cu$_3$O$_{6.95}$ ($T_capprox 93$ K). Using the absolute intensity measurements of the full spectra, we estimate the change in the magnetic exchange energy between the normal and superconducting states and find it to be about 15 times larger than the superconducting condensation energy. Our results thus indicate that the change in the magnetic exchange energy is large enough to provide the driving force for high-$T_c$ superconductivity in YBa$_2$Cu$_3$O$_{6.95}$.