No Arabic abstract
Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit $Delta$ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with $Delta$ isobar intermediate states (N3LO$Delta$) recently developed by Piarulli et al. [arXiv:1606:06335]. We find that using this N3LO$Delta$ potential, supplemented with a local N2LO three-nucleon interaction with explicit $Delta$ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement with these empirical constraints in all the considered nucleonic density range. In addition, we find that the explicit inclusion of $Delta$ isobars diminishes the strength of the three-nucleon interactions needed the get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement.
We study if commonly used nucleon-nucleon effective interactions, obtained from fitting the properties of cold nuclear matter and of finite nuclei, can properly describe the hot dense nuclear matter produced in intermediate-energy heavy-ion collisions. We use two representative effective interactions, i.e., an improved isospin- and momentum-dependent interaction with its isovector part calibrated by the results from the emph{ab initio} non-perturbative self-consistent Greens function (SCGF) approach with chiral forces, and a Skyme-type interaction fitted to the equation of state of cold nuclear matter from chiral effective many-body perturbation theory and the binding energy of finite nuclei. In the mean-field approximation, we evaluate the equation of state and the single-nucleon potential for nuclear matter at finite temperatures and compare them to those from the SCGF approach. We find that the improved isospin- and momentum-dependent interaction reproduces reasonably well the SCGF results due to its weaker momentum dependence of the mean-field potential than in the Skyrme-type interaction. Our study thus indicates that effective interactions with the correct momentum dependence of the mean-filed potential can properly describe the properties of hot dense nuclear matter and are thus suitable for use in transport models to study heavy-ion collisions at intermediate energies.
The four-nucleon bound state and scattering below three-body breakup threshold are described based on the realistic coupled-channel potential CD Bonn + $Delta$ which allows the excitation of a single nucleon to a $Delta$ isobar. The Coulomb repulsion between protons is included. In the four-nucleon system the two-baryon coupled-channel potential yields effective two-, three- and four-nucleon forces, mediated by the $Delta$ isobar and consistent with each other and with the underlying two-nucleon force. The effect of the four-nucleon force on the studied observables is much smaller than the effect of the three-nucleon force. The inclusion of the $Delta$ isobar is unable to resolve the existing discrepancies with the experimental data.
The effective chiral theory of the in-medium NN interactions is considered. The shallow bound states, which complicate the effective field theory analysis in vacuum do not exist in matter. We show that the next-to-leading order terms in the chiral expansion of the effective Lagrangian can be interpreted as corrections so that the expansion is systematic. The Low Energy Effective Constants of this Lagrangian are found to satisfy the concept of naturalness. The potential energy per particle is calculated. The problems and challenges in constructing the chiral theory of nuclear matter are outlined.
We investigate the thermodynamic equation of state of isospin-symmetric nuclear matter with microscopic nuclear forces derived within the framework of chiral effective field theory. Two- and three-body nuclear interactions constructed at low resolution scales form the basis for a perturbative calculation of the finite-temperature equation of state. The nuclear force models and many-body methods are benchmarked against bulk properties of isospin-symmetric nuclear matter at zero temperature, which are found to be well reproduced when chiral nuclear interactions constructed at the lowest resolution scales are employed. The calculations are then extended to finite temperatures, where we focus on the liquid-gas phase transition and the associated critical point. The Maxwell construction is applied to construct the physical equation of state, and the value of the critical temperature is determined to be T_c =17.2-19.1 MeV, in good agreement with the value extracted from multifragmentation reactions of heavy ions.
The constraints imposed by chiral symmetry on hadron correlation functions in nuclear medium are discussed. It is shown that these constraints imply a certain structure for the in-medium hadron correlators and lead to the cancelation of the order $rho m_pi$ term in the in-medium nucleon correlator. We also consider the effect of mixing of the chiral partners correlation functions arising from the interaction of nuclear pions with corresponding interpolating currents. It reflects the phenomena of partial restoration of chiral symmetry. The different scenarios of such restoration are briefly discussed.