Do you want to publish a course? Click here

Variability, polarimetry, and timing properties of single pulses from PSR J1713+0747 using the Large European Array for Pulsars

192   0   0.0 ( 0 )
 Added by Kuo Liu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single pulses preserve information about the pulsar radio emission and propagation in the pulsar magnetosphere, and understanding the behaviour of their variability is essential for estimating the fundamental limit on the achievable pulsar timing precision. Here we report the findings of our analysis of single pulses from PSR J1713+0747 with data collected by the Large European Array for Pulsars (LEAP). We present statistical studies of the pulse properties that include distributions of their energy, phase and width. Two modes of systematic sub-pulse drifting have been detected, with a periodicity of 7 and 3 pulse periods. The two modes appear at different ranges of pulse longitude but overlap under the main peak of the integrated profile. No evidence for pulse micro-structure is seen with a time resolution down to 140 ns. In addition, we show that the fractional polarisation of single pulses increases with their pulse peak flux density. By mapping the probability density of linear polarisation position angle with pulse longitude, we reveal the existence of two orthogonal polarisation modes. Finally, we find that the resulting phase jitter of integrated profiles caused by single pulse variability can be described by a Gaussian probability distribution only when at least 100 pulses are used for integration. Pulses of different flux densities and widths contribute approximately equally to the phase jitter, and no improvement on timing precision is achieved by using a sub-set of pulses with a specific range of flux density or width.



rate research

Read More

We have studied 4265 giant pulses (GPs) from the millisecond pulsar B1937+21; the largest-ever sample gathered for this pulsar, in observations made with the Large European Array for Pulsars. The pulse energy distribution of GPs associated with the interpulse are well-described by a power law, with index $alpha = -3.99 pm 0.04$, while those associated with the main pulse are best-described by a broken power law, with the break occurring at $sim7$ Jy $mu$s, with power law indices $alpha_{text{low}} = -3.48 pm 0.04$ and $alpha_{text{high}} = -2.10 pm 0.09$. The modulation indices of the GP emission are measured, which are found to vary by $sim0.5$ at pulse phases close to the centre of the GP phase distributions. We find the frequency-resolved structure of GPs to vary significantly, and in a manner that cannot be attributed to the interstellar medium influence on the observed pulses. We examine the distribution of polarisation fractions of the GPs and find no correlation between GP emission phase and fractional polarisation. We use the GPs to time PSR B1937+21 and although the achievable time of arrival precision of the GPs is approximately a factor of two greater than that of the average pulse profile, there is a negligible difference in the precision of the overall timing solution when using the GPs.
PSR J1713+0747 is one of the most precisely timed pulsars in the international pulsar timing array experiment. This pulsar showed an abrupt profile shape change between April 16, 2021 (MJD 59320) and April 17, 2021 (MJD 59321). In this paper, we report the results from multi-frequency observations of this pulsar carried out with the upgraded Giant Metrewave Radio Telescope (uGMRT) before and after the event. We demonstrate the profile change seen in Band 5 (1260 MHz - 1460 MHz) and Band 3 (300 MHz - 500 MHz). The timing analysis of this pulsar shows a disturbance accompanying this profile change followed by a recovery with a timescale of $sim 159$ days. Our data suggest that a model with chromatic index as a free parameter is preferred over models with combinations of achromaticity with DM bump or scattering bump. We determine the frequency dependence to be $sim u^{+1.34}$.
The frequency dependence of radio pulse arrival times provides a probe of structures in the intervening media. Demorest et al. 2013 was the first to show a short-term (~100-200 days) reduction in the electron content along the line of sight to PSR J1713+0747 in data from 2008 (approximately MJD 54750) based on an apparent dip in the dispersion measure of the pulsar. We report on a similar event in 2016 (approximately MJD 57510), with average residual pulse-arrival times of approximately 3.0,-1.3, and -0.7 microseconds at 820, 1400, and 2300 MHz, respectively. Timing analyses indicate possible departures from the standard nu^-2 dispersive-delay dependence. We discuss and rule out a wide variety of potential interpretations. We find the likeliest scenario to be lensing of the radio emission by some structure in the interstellar medium, which causes multiple frequency-dependent pulse arrival-time delays.
Using data from the Large European Array for Pulsars (LEAP), and the Effelsberg telescope, we study the scintillation parameters of the millisecond pulsar J0613-0200 over a 7 year timespan. The secondary spectrum -- the 2D power spectrum of scintillation -- presents the scattered power as a function of time delay, and contains the relative velocities of the pulsar, observer, and scattering material. We detect a persistent parabolic scintillation arc, suggesting scattering is dominated by a thin, anisotropic region. The scattering is poorly described by a simple exponential tail, with excess power at high delays; we measure significant, detectable scattered power at times out to $sim 5 mu s$, and measure the bulk scattering delay to be between 50 to 200,ns with particularly strong scattering throughout 2013. These delays are too small to detect a change of the pulse profile shape, yet they would change the times-of-arrival as measured through pulsar timing. The arc curvature varies annually, and is well fit by a one-dimensional scattering screen $sim 40%$ of the way towards the pulsar, with a changing orientation during the increased scattering in 2013. Effects of uncorrected scattering will introduce time delays correlated over time in individual pulsars, and may need to be considered in gravitational wave analyses. Pulsar timing programs would benefit from simultaneously recording in a way that scintillation can be resolved, in order to monitor the variable time delays caused by multipath propagation.
We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600$-$3053 and J1918$-$0642, implying pulsar and companion masses $m_p=1.22_{-0.35}^{+0.5} text{M}_{odot}$, $m_c = 0.21_{-0.04}^{+0.06} text{M}_{odot }$ and $m_p=1.25_{-0.4}^{+0.6} text{M}_{odot}$, $m_c = 0.23_{-0.05}^{+0.07} text{M}_{odot }$, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012$+$5307 and J1909$-$3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600$-$3053 and J1909$-$3744.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا