No Arabic abstract
We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2)E-9 erg/cm$^2$/s and decayed to quiescence in approximately a month. The X-ray spectrum was dominated by a power-law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature > 20 keV . A broad ({sigma} ~ 1 keV) emission line was detected at an energy (E = 6.9$^{+0.2}_{-0.3}$ keV) compatible with the K{alpha} transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible with the value observed in 2009. Assuming that the source spun up during the 2015 outburst at the same rate observed during the previous outburst, we derive a conservative upper limit on the spin down rate during quiescence of 3.5E-15 Hz/s. Interpreting this value in terms of electromagnetic spin down yields an upper limit of 3.6E26 G/cm$^3$ to the pulsar magnetic dipole (assuming a magnetic inclination angle of 30{deg}). We also report on the detection of five type-I X-ray bursts (three in the XMM-Newton data, two in the INTEGRAL data), none of which indicated photospheric radius expansion.
The twelfth accretion-powered millisecond pulsar, IGR J17511-3057, was discovered in September 2009. In this work we study its spectral and timing properties during the 2009 outburst based on Swift and RXTE data. Our spectral analysis of the source indicates only slight spectral shape evolution during the entire outburst. The equivalent width of the iron line and the apparent area of the blackbody emission associated with the hotspot at the stellar surface both decrease significantly during the outburst. This is consistent with a gradual receding of the accretion disc as the accretion rate drops. The pulse profile analysis shows absence of dramatic shape evolution with a moderate decrease in pulse amplitude. This behaviour might result from a movement of the accretion column footprint towards the magnetic pole as the disc retreats. The time lag between the soft and the hard energy pulses increase by a factor of two during the outburst. A physical displacement of the centroid of the accretion shock relative to the blackbody spot or changes in the emissivity pattern of the Comptonization component related to the variations of the accretion column structure could cause this evolution. We have found that IGR J17511-3057 demonstrates outburst stages similar to those seen in SAX J1808.4-3658. A transition from the slow decay into the rapid drop stage, associated with the dramatic flux decrease, is also accompanied by a pulse phase shift which could result from an appearance of the secondary spot due to the increasing inner disc radius.
IGR J17511-3057 is the second X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about a month from September 13, 2009. The broad-band average spectrum is well described by thermal Comptonization with an electron temperature of kT_e ~ 25 keV, soft seed photons of kT_bb ~ 0.6 keV, and Thomson optical depth tau_T ~ 2 in a slab geometry. During the outburst the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth being constant within errors. We fitted the outburst profile with the exponential model, and using the disk instability model we inferred the outer disk radius to be (4.8 - 5.4) times 1010 cm. The INTEGRAL and RXTE data reveal the X-ray pulsation at a period of 4.08 milliseconds up to ~ 120 keV. The pulsed fraction is shown to decrease from ~22% at 3 keV to a constant pulsed fraction of ~17-18% between 7-30 keV, and then to decrease again down to ~13% at 60 keV. The nearly sinusoidal pulses show soft lags monotonically increasing with energy to about 0.2 ms at 10-20 keV similar to those observed in other accreting pulsars. The short burst profiles indicate hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of 2 times solar. However, the variation of burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.
We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the persistent AMXPs SAX J1808.4-3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other two persistent pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the distance of 6.9 kpc. We discuss the implications of our results for models of the burst oscillation mechanism.
IGR J00291+5934 is the fastest-known accretion-powered X-ray pulsar, discovered during a transient outburst in 2004. In this paper, we report on Integral and Swift observations during the 2015 outburst, which lasts for $sim25$ d. The source has not been observed in outburst since 2008, suggesting that the long-term accretion rate has decreased by a factor of two since discovery. The averaged broad-band (0.1 - 250 keV) persistent spectrum in 2015 is well described by a thermal Comptonization model with a column density of $N_{rm H} approx4times10^{21}$ cm$^{-2}$, a plasma temperature of $kT_{rm e} approx50$ keV, and a Thomson optical depth of $tau_{rm T}approx1$. Pulsations at the known spin period of the source are detected in the Integral data up to the $sim150$ keV energy band. We also report on the discovery of the first thermonuclear burst observed from IGR J00291+5934, which lasts around 7 min and occurs at a persistent emission level corresponding to roughly $1.6%$ of the Eddington accretion rate. The properties of the burst suggest it is powered primarily by helium ignited at a depth of $y_{rm ign}approx1.5times10^9$ g cm$^{-2}$ following the exhaustion by steady burning of the accreted hydrogen. The Swift/BAT data from the first $sim20$ s of the burst provide indications of a photospheric radius expansion phase. Assuming this is the case, we infer a source distance of $d = 4.2 pm 0.3$ kpc.
The discovery of the X-ray source IGR J17252-3616 by INTEGRAL was reported on 9 February 2004. Regular monitoring by INTEGRAL shows that IGR J17252-3616 is a persistent hard X-ray source with an average count rate of 0.96 counts/s (~6.4 mCrab) in the 20-60 keV energy band. A follow-up observation with XMM-Newton, which was performed on 21 March 21 2004, showed that the source is located at R.A.(2000.0)=17h25m11.4 and Dec.=-36degr1658.6 with an uncertainty of 4. The only infra-red counterpart to be found within the XMM-Newton error circle was 2MASS J17251139-3616575, which has a Ks-band magnitude of 10.7 and is located 1 away from the XMM-Newton position. The analysis of the combined INTEGRAL and XMM-Newton observations shows that the source is a binary X-ray pulsar with a spin period of 413.7 s and an orbital period of 9.72 days. The spectrum can be fitted with a flat power law plus an energy cut off (Gamma~0.02,Ecut~8.2 keV) or a Comptonized model (kTe~5.5 keV, tau~7.8). The spectrum also indicates a large hydrogen column density of Nh~15x1e22 atoms/cm-2 suggesting an intrinsic absorption. The Fe Kalpha line at 6.4 keV is clearly detected. Phase-resolved spectroscopy does not show any variation in the continuum except the total emitted flux. The absorption is constant along the pulse phase. This source can be associated with EXO 1722-363 as both systems show common timing and spectral features. The observations suggest that the source is a wind-fed accreting pulsar accompanied by a supergiant star.