Do you want to publish a course? Click here

Tuning ferromagnetic BaFe$_2$(PO$_4$)$_2$ through a high Chern number topological phase

64   0   0.0 ( 0 )
 Added by Kwan-Woo Lee
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is strong interest in discovering or designing wide gap Chern insulators. Here we follow a Chern insulator to trivial Mott insulator transition versus interaction strength U in a honeycomb lattice Fe-based transition metal oxide, discovering that a spin-orbit coupling energy scale $xi$=40 meV can produce and maintain a topologically entangled Chern insulating state against large band structure changes arising from an interaction strength U up to 60 times as large. Within the Chern phase the minimum gap switches from the zone corner K to the zone center $Gamma$ while maintaining the topological structure. At a critical strength $U_c$, the continuous evolution of the electronic structure encounters a gap closing then reopening, upon which the system reverts to a trivial Mott insulating phase. This Chern insulator phase of honeycomb lattice Fe$^{2+}$ BaFe$_2$(PO$_4$)$_2$ corresponds to a large Chern number C=-3 that will provide enhanced anomalous Hall conductivity due to the associated three edge states threading through the bulk gap of 80 meV.



rate research

Read More

74 - F. Landolt 2020
Magnetization, magnetic torque, neutron diffraction and NMR experiments are used to map out the $H$$-$$T$ phase diagram of the prototypical quasi-two-dimensional ferro-antiferromagnet Pb$_2$VO(PO$_4$)$_2$ in magnetic fields up to 27 T. When the field is applied perpendicular to the axis of magnetic anisotropy, a new magnetic state emerges through a discontinuous transition and persists in a narrow field range just below saturation. The measured NMR spectra suggest a complex and possibly incommensurate magnetic order in that regime.
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical CDW phase transition, temperature dependent physical properties of single crystals reveal a first-order phase transition. This is accompanied by a discontinuous change in the size of the crystal lattice. In fact, this large strain has catastrophic consequences for the crystals causing them to physically shatter. Single crystal x-ray diffraction reveals super-lattice peaks in the low-temperature phase signaling the development of a CDW lattice modulation. No similar low-temperature transitions are observed in BaCo$_2$Al$_9$. Electronic structure calculations provide one hint to the different behavior of these two compounds; the d-orbital states in the Fe compound are not completely filled. Iron compounds are renowned for their magnetism and partly filled d-states play a key role. It is therefore surprising that BaFe$_2$Al$_9$ develops a structural modulation instead at low temperature instead of magnetic order.
We investigate the low temperature magnetic properties of a $S=frac{5}{2}$ Heisenberg kagome antiferromagnet, the layered monodiphosphate Li$_9$Fe$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$, using magnetization measurements and $^{31}$P nuclear magnetic resonance. An antiferromagnetic-type order sets in at $T_{rm N}=1.3$ K and a characteristic magnetization plateau is observed at 1/3 of the saturation magnetization below $T^* sim 5$ K. A moderate $^{31}$P NMR line broadening reveals the development of anisotropic short-range correlations within the plateau phase concomitantly with a gapless spin-lattice relaxation time $T_1 sim k_B T / hbar S$, which both point to the presence of a semiclassical nematic spin liquid state predicted for the Heisenberg kagome antiferromagnetic model.
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs$_2$CuCl$_4$ as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and magnetization measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
We present observations of highly frustrated quasi two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S$_{eff}$ = 1/2 compound $gamma$-BaCo$_2$(PO$_4$)$_2$ ($gamma$-BCPO). Specific heat shows a broad peak comprised of two weak kink features at $T_{N1} sim$ 6 K and $T_{N2} sim$ 3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below $T_{N1}$ and $T_{N2}$, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length $xi_c = 60pm2$ AA ($T_{N1}$) and in quasi-2D helical domains with $xi_h = 350 pm 11$ AA ($T_{N2}$). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on $gamma$-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ $J_1$-$J_2$-$J_3$ model with ferromagnetic nearest-neighbor exchange $J_1$ are favored, both near regions of high classical degeneracy. High energy coherent excitations ($sim 10$ meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above $T_N$. These data show that $gamma$-BCPO is a rare highly frustrated, quasi-2D S$_{eff}$ = 1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا