A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.
A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV--PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.
In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called Fast Radio Bursts (FRBs) is still a great mystery despite the growing observational efforts made by various multi-wavelength and multi-messenger facilities. So far, many models have been proposed to explain FRBs but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, the question whether some hadronic processes may occur in the vicinity of the FRB source is assessed. If so, FRBs may contribute to the high energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures has been done using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs have been selected and no coincident neutrino candidate was observed. Upper limits on the per burst neutrino fluence have been derived using a power law spectrum, $rm{frac{dN}{dE_ u}propto E_ u^{-gamma}}$, for the incoming neutrino flux, assuming spectral indexes $gamma$ = 1.0, 2.0, 2.5. Finally, the neutrino energy has been constrained by computing the total energy radiated in neutrinos assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released are derived from the associated null results.
A search for muon neutrinos in coincidence with gamma-ray bursts with the ANTARES neutrino detector using data from the end of 2007 to 2011 is performed. Expected neutrino fluxes are calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code are employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 gamma-ray bursts in the given period is optimised using an extended maximum-likelihood strategy. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model.
Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4$^{textrm{th}}$, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within $pm500$ s around the GW event time nor any time clustering of events over an extended time window of $pm3$ months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than $sim4times 10^{54}$ erg for a $E^{-2}$ spectrum.
The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.
ANTARES Collaboration: S. Adrian-Martinez
,A. Albert
,M. Andre
.
(2016)
.
"Stacked search for time shifted high energy neutrinos from gamma ray bursts with the ANTARES neutrino telescope"
.
Bruny Baret
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا