Direct Observation of Acoustic Phonon Confinement in Free-Standing Semiconductor Nanowires


Abstract in English

Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. Modification of acoustic phonon spectrum in structures with periodically modulated elastic constant or mass density - referred to as phononic crystals - has been proven experimentally and utilized in practical applications. A possibility of modifying acoustic phonon spectrum in individual nanostructures via spatial confinement would bring tremendous benefits for controlling phonon-electron interaction and thermal conduction at nanoscale. However, despite strong scientific and practical importance, conclusive experimental evidence of acoustic phonon confinement in individual free-standing nanostructures, e.g. nanowires, is still missing. The length scale, at which phonon dispersion undergoes changes and a possibility of the phonon group velocity reduction, are debated. Here, we utilize specially designed high-quality GaAs nanowires (NWs) with different diameters, D, and large inter-nanowire distances to directly demonstrate acoustic phonon confinement. The measurements conducted with Brillouin - Mandelstam spectroscopy reveal confined phonon polarization branches with frequencies from 4 GHz to 40 GHz in NWs with D as large as ~128 nm, i.e. at length scale, which exceeds the grey phonon mean-free path in GaAs by an almost an order of magnitude. The phonon dispersion modification and phonon energy scaling with D in individual nanowires are in excellent agreement with theory. The obtained results can lead to more efficient nanoscale control of acoustic phonons, with benefits for nanoelectronics, thermoelectric energy conversion, thermal management, and novel spintronic technologies.

Download