Cross-correlating Planck tSZ with RCSLenS weak lensing: Implications for cosmology and AGN feedback


Abstract in English

We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Sequence Cluster Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, $xi^{ y-kappa}$ and $xi^ {y-gamma_{t}}$, and a Fourier space estimator, $C_{ell}^{y-kappa}$, in our analysis. We detect a significant correlation out to three degrees of angular separation on the sky. Based on statistical noise only, we can report 13$sigma$ and 17$sigma$ detections of the cross-correlation using the configuration-space $y-kappa$ and $y-gamma_{t}$ estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 6$sigma$ and 8$sigma$, respectively. A similar level of detection is obtained from the Fourier-space estimator, $C_{ell}^{y-kappa}$. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OWLS suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable AGN feedback that removes large quantities of hot gas from galaxy groups and WMAP-7yr best-fit cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology over-predict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed `universal pressure profile.

Download