Do you want to publish a course? Click here

Magnetoresistence engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates

234   0   0.0 ( 0 )
 Added by Andreas Baumgartner
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find {it two} sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transition between singlet and a triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin-based Bell inequalities.



rate research

Read More

We consider a quantum dot embedded in a three-dimensional nanowire with tunable aspect ratio a. A configuration interaction theory is developed to calculate the energy spectra of the finite 1D quantum dot systems charged with two electrons in the presence of magnetic fields B along the wire axis. Fruitful singlet-triplet transition behaviors are revealed and explained in terms of the competing exchange interaction, correlation interaction, and spin Zeeman energy. In the high aspect ratio regime, the singlet-triplet transitions are shown designable by tuning the parameters a and B. The transitions also manifest the highly correlated nature of long nanowire quantum dots.
We report electrical characterization of quantum dots formed by introducing pairs of thin wurtzite (WZ) segments in zinc blende (ZB) InAs nanowires. Regular Coulomb oscillations are observed over a wide gate voltage span, indicating that WZ segments create significant barriers for electron transport. We find a direct correlation of transport properties with quantum dot length and corresponding growth time of the enclosed ZB segment. The correlation is made possible by using a method to extract lengths of nanowire crystal phase segments directly from scanning electron microscopy images, and with support from transmission electron microscope images of typical nanowires. From experiments on controlled filling of nearly empty dots with electrons, up to the point where Coulomb oscillations can no longer be resolved, we estimate a lower bound for the ZB-WZ conduction-band offset of 95 meV.
We estimate the triplet-singlet relaxation rate due to spin-orbit coupling assisted by phonon emission in weakly-confined quantum dots. Our results for two and four electrons show that the different triplet-singlet relaxation trends observed in recent experiments under magnetic fields can be understood within a unified theoretical description, as the result of the competition between spin-orbit coupling and phonon emission efficiency. Moreover, we show that both effects are greatly affected by the strength of the confinement and the external magnetic field, which may give access to very long-lived triplet states as well as to selective population of the triplet Zeeman sublevels.
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=Delta/e$ markedly stronger(weaker) than the quasiparticle tunneling peaks at $|V_{sd}|=2Delta/e$ for odd(even) occupation. We attribute the enhanced $Delta$-peak to an interplay between Kondo-correlations and Andreev tunneling in dots with an odd number of spins, and substantiate this interpretation by a poor mans scaling analysis.
Results of calculations and high source-drain transport measurements are presented which demonstrate voltage-tunable entanglement of electron pairs in lateral quantum dots. At a fixed magnetic field, the application of a judiciously-chosen gate voltage alters the ground-state of an electron pair from an entagled spin singlet to a spin triplet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا