Do you want to publish a course? Click here

Effects of high-power laser irradiation on sub-superficial graphitic layers in single crystal diamond

135   0   0.0 ( 0 )
 Added by Paolo Olivero
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the structural modifications induced by a lambda = 532 nm ns-pulsed high-power laser on sub-superficial graphitic layers in single-crystal diamond realized by means of MeV ion implantation. A systematic characterization of the structures obtained under different laser irradiation conditions (power density, number of pulses) and subsequent thermal annealing was performed by different electron microscopy techniques. The main feature observed after laser irradiation is the thickening of the pre-existing graphitic layer. Cross sectional SEM imaging was performed to directly measure the thickness of the modified layers, and subsequent selective etching of the buried layers was employed to both assess their graphitic nature and enhance the SEM imaging contrast. In particular, it was found that for optimal irradiation parameters the laser processing induces a six-fold increase the thickness of sub superficial graphitic layers without inducing mechanical failures in the surrounding crystal. TEM microscopy and EELS spectroscopy allowed a detailed analysis of the internal structure of the laser irradiated layers, highlighting the presence of different nano graphitic and amorphous layers. The obtained results demonstrate the effectiveness and versatility of high-power laser irradiation for an accurate tuning of the geometrical and structural features of graphitic structures embedded in single crystal diamond, and open new opportunities in diamond fabrication.



rate research

Read More

Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk. Their effectiveness has been shown for the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate such fabrication method for the electrical excitation of color centers in diamond. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs with a spacing of 10 $mu$m were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current above an effective voltage threshold of 150V, which was interpreted according to the theory of Space Charge Limited Current. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced bright electroluminescent emission from native neutrally-charged nitrogen-vacancy centers ($NV^0$); the acquired spectra highlighted the absence of EL associated with radiation damage.
We report on the systematic characterization of conductive micro-channels fabricated in single-crystal diamond with direct ion microbeam writing. Focused high-energy (~MeV) helium ions are employed to selectively convert diamond with micrometric spatial accuracy to a stable graphitic phase upon thermal annealing, due to the induced structural damage occurring at the end-of-range. A variable-thickness mask allows the accurate modulation of the depth at which the microchannels are formed, from several {mu}m deep up to the very surface of the sample. By means of cross-sectional transmission electron microscopy (TEM) we demonstrate that the technique allows the direct writing of amorphous (and graphitic, upon suitable thermal annealing) microstructures extending within the insulating diamond matrix in the three spatial directions, and in particular that buried channels embedded in a highly insulating matrix emerge and electrically connect to the sample surface at specific locations. Moreover, by means of electrical characterization both at room temperature and variable temperature, we investigate the conductivity and the charge-transport mechanisms of microchannels obtained by implantation at different ion fluences and after subsequent thermal processes, demonstrating that upon high-temperature annealing, the channels implanted above a critical damage density convert to a stable graphitic phase. These structures have significant impact for different applications, such as compact ionizing radiation detectors, dosimeters, bio-sensors and more generally diamond-based devices with buried three-dimensional all-carbon electrodes.
We report on the fabrication and characterization of a single-crystal diamond device for the electrical stimula- tion of light emission from nitrogen-vacancy (NV0) and other defect-related centers. Pairs of sub-superficial graphitic micro-electrodes embedded in insulating diamond were fabricated by a 6 MeV C3+ micro-beam irra- diation followed by thermal annealing. A photoluminescence (PL) characterization evidenced a low radiation damage concentration in the inter-electrode gap region, which did not significantly affect the PL features domi- nated by NV centers. The operation of the device in electroluminescence (EL) regime was investigated by ap- plying a bias voltage at the graphitic electrodes, resulting in the injection of a high excitation current above a threshold voltage (~300V), which effectively stimulated an intense EL emission from NV0 centers. In addition, we report on the new observation of two additional sharp EL emission lines (at 563 nm and 580 nm) related to interstitial defects formed during MeV ion beam fabrication.
The control of the charge state of nitrogen-vacancy (NV) centers in diamond is of primary importance for the stabilization of their quantum-optical properties, in applications ranging from quantum sensing to quantum computing. To this purpose, in this work current-injecting micro-electrodes were fabricated in bulk diamond for NV charge state control. Buried (i.e. 3 {mu}m in depth) graphitic micro-electrodes with spacing of 9 {mu}m were created in single-crystal diamond substrates by means of a 6 MeV C scanning micro-beam. The high breakdown field of diamond was exploited to electrically control the variation in the relative population of the negative (NV-) and neutral (NV0) charge states of sub-superficial NV centers located in the inter- electrode gap regions, without incurring into current discharges. Photoluminescence spectra acquired from the biased electrodes exhibited an electrically induced increase up to 40% in the NV- population at the expense of the NV0 charge state. The variation in the relative charge state populations showed a linear dependence from the injected current at applied biases smaller than 250 V, and was interpreted as the result of electron trapping at NV sites, consistently with the Space Charge Limited Current interpretation of the abrupt current increase observed at 300 V bias voltage. In correspondence of such trap-filling-induced transition to a high-current regime, a strong electroluminescent emission from the NV0 centers was observed. In the high-current-injection regime, a decrease in the NV- population was observed, in contrast with the results obtained at lower bias voltages. These results disclose new possibilities in the electrical control of the charge state of NV centers located in the diamond bulk, which are characterized by longer spin coherence times.
This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample surface, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10-40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modelling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modelling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing to generate highly customized structures by combining appropriately chosen irradiation parameters and masks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا