No Arabic abstract
The $CP$ violation observables $S$ and $C$ in the decay channel $B^0 !rightarrow D^+ D^-$ are determined from a sample of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 3 fb$^{-1}$. The observable $S$ describes $CP$ violation in the interference between mixing and the decay amplitude, and $C$ parametrizes direct $CP$ violation in the decay. The following values are obtained from a flavor-tagged, decay-time-dependent analysis: begin{align*} S &= -0.54 , ^{+0.17}_{-0.16} , text{(stat)} pm 0.05 , text{(syst)},, ewline C &= phantom{-}0.26 , ^{+0.18}_{-0.17} , text{(stat)} pm 0.02 , text{(syst)},. end{align*} These values provide evidence for $CP$ violation at a significance level of 4.0 standard deviations. The phase shift due to higher-order Standard Model corrections is constrained to a small value of begin{align*} Deltaphi = -0.16,^{+0.19}_{-0.21},text{rad},. end{align*}
A measurement of the $CP$ asymmetries $S_{f}$ and $S_{bar{f}}$ in $B^0to D^{mp}pi^{pm}$ decays is reported. The decays are reconstructed in a dataset collected with the LHCb experiment in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV and corresponding to an integrated luminosity of $3.0 rm{ fb}^{-1}$. The $CP$ asymmetries are measured to be $S_{f} = 0.058 pm 0.020 (rm{stat}) pm 0.011(rm{syst})$ and $S_{bar{f}} = 0.038pm 0.020 (text{stat})pm 0.007 (text{syst})$. These results are in agreement with, and more precise than, previous determinations. They are used to constrain $|sinleft(2beta+gammaright)|$ and $gamma$ to intervals that are consistent with the current world-average values.
Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $pi^- pi^+$ are measured using proton-proton collisions corresponding to $3mathrm{,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7mathrm{,Tekern -0.1em V}$ and $8mathrm{,Tekern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be begin{align} Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(pi^-pi^+) = (+0.14 pm 0.16mathrm{,(stat)} pm 0.08mathrm{,(syst)})% . onumber end{align} A measurement of $A_{CP}(K^-K^+)$ is obtained assuming negligible $CP$ violation in charm mixing and in Cabibbo-favoured $D$ decays. It is found to be begin{align} A_{CP}(K^-K^+) = (-0.06 pm 0.15mathrm{,(stat)} pm 0.10mathrm{,(syst)}) % , onumber end{align} where the correlation coefficient between $Delta A_{CP}$ and $A_{CP}(K^-K^+)$ is $rho=0.28$. By combining these results, the $CP$ asymmetry in the $D^0rightarrowpi^-pi^+$ channel is $A_{CP}(pi^-pi^+)=(-0.20pm0.19mathrm{,(stat)}pm0.10mathrm{,(syst)})%$.
The decay-time-dependent $CP$ asymmetry in $B^0 to D^{*pm}D^{mp}$ decays is measured using a data set corresponding to an integrated luminosity of $9$fb$^{-1}$ recorded by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The $CP$ parameters are measured as $ S_{D^*D} = -0.861 pm 0.077,text{(stat)} pm 0.019 ,text{(syst)},, $ $ Delta S_{D^*D} = 0.019 pm 0.075 ,text{(stat)} pm 0.012 ,text{(syst)} ,, $ $ C_{D^*D} = -0.059 pm 0.092 ,text{(stat)} pm 0.020 ,text{(syst)} ,, $ $ Delta C_{D^*D} = -0.031 pm 0.092 ,text{(stat)} pm 0.016 ,text{(syst)} ,, $ $ {cal A}_{D^*D} = 0.008 pm 0.014 ,text{(stat)} pm 0.006 ,text{(syst)},. $ The analysis provides the most precise single measurement of $CP$ violation in this decay channel to date. All parameters are consistent with their current world average values.
Charm physics has played all along a central role in particle physics, however the level of attention on it has tremendously increased in the last years because of the observation of fast $D^0-bar{D}^0$ flavour oscillations and because of very recent observed hints of CP violation. While in the past these would have been unambiguously interpreted as signs of New Physics, the revisitation of theoretical expectations, prompted by the latest experimental measurements, makes the picture not clear. This brief review covers the current status of CP-violating measurements in the $D^0-bar{D}^0$ system, both on the experimental and theoretical side.
The $CP$ asymmetry in $B^-to D_s^-D^0$ and $B^-to D^-D^0$ decays is measured using LHCb data corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV. The results are $A^{CP}(B^-to D_s^-D^0)=(-0.4pm 0.5pm 0.5)%$ and $A^{CP}(B^-to D^-D^0)=( 2.3pm 2.7pm 0.4)%$, where the first uncertainties are statistical and the second systematic. This is the first measurement of $A^{CP}(B^-to D_s^-D^0)$ and the most precise determination of $A^{CP}(B^-to D^-D^0)$. Neither result shows evidence of $CP$ violation.