Do you want to publish a course? Click here

Coherent Cerenkov radiation and laser oscillation in a photonic crystal

279   0   0.0 ( 0 )
 Added by Peter van der Slot
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that photonic crystals can be used to generate powerful and highly coherent laser radiation when injecting a beam of free electrons. Using theoretical investigations we present the startup dynamics and coherence properties of such laser, in which gain is provided by matching the optical phase velocity in the photonic crystal to the velocity of the electron beam.



rate research

Read More

We point out that the polarization state of radiation from a photonic crystal slab is strongly constrained by the direct non-resonant scattering process. The phase difference between the two linearly-polarized components in the far field can be predicted analytically and is largely independent of the periodic pattern. We verify the prediction with full-field electromagnetic simulations.
To be useful for most scientific and medical applications, compact particle accelerators will require much higher average current than enabled by current architectures. For this purpose, we propose a photonic crystal architecture for a dielectric laser accelerator, referred to as a multi-input multi-output silicon accelerator (MIMOSA), that enables simultaneous acceleration of multiple electron beams, increasing the total electron throughput by at least one order of magnitude. To achieve this, we show that the photonic crystal must support a mode at the $Gamma$ point in reciprocal space, with a normalized frequency equal to the normalized speed of the phase matched electron. We show that the figure of merit of the MIMOSA can be inferred from the eigenmodes of the corresponding infinitely periodic structure, which provides a powerful approach to design such devices. Additionally, we extend the MIMOSA architecture to electron deflectors and other electron manipulation functionalities. These additional functionalities, combined with the increased electron throughput of these devices, permit all-optical on-chip manipulation of electron beams in a fully integrated architecture compatible with current fabrication technologies, which opens the way to unconventional electron beam shaping, imaging, and radiation generation.
We study the configuration of efficient nonlinear Cerenkov diffraction generated from a one-dimensional nonlinear photonic crystal surface, which underlies the incorporation of both quasi-phase-matching and total internal reflection by the crystal surface. Multidirectional radiation spots with different Cerenkov angles are demonstrated experimentally, which results from different orders of reciprocal vectors. At specific angles, the incident light and total internal reflect light associating with quasi-phase-matching format completely phase-matching scheme, leading to great enhancement of harmonic efficiency.
168 - V. S. Gorelik 2007
Stimulated globular scattering (SGS) characteristics (frequency shifts, threshold, conversion efficiency) have been studied in photonic crystals (synthetic opal matrices and opal nanocomposites) at different temperatures. Results have been compared with stimulated Raman scattering investigations in calcite single crystals. In both cases temperature lowering from +20 C to -196 C resulted in the stimulated scattering energy increase and its redistribution to the higher order components.
High power single mode quantum cascade lasers with a narrow far field are important for several applications including surgery or military countermeasure. Existing technologies suffer from drawbacks such as operation temperature and scalability. In this paper we introduce a fabrication approach that potentially solves simultaneously these remaining limitations. We demonstrate and characterize deep etched, buried photonic crystal quantum cascade lasers emitting around a wavelength of 8.5 {mu}m. The active region was dry etched before being regrown with semi-insulating Fe:InP. This fabrication strategy results in a refractive index contrast of 10% allowing good photonic mode control, and simultaneously provides good thermal extraction during operation. Single mode emission with narrow far field pattern and peak powers up to 0.88 W at 263 K were recorded from the facet of the photonic crystal laser, and lasing operation was maintained up to room temperature. The lasing modes emitted from square photonic crystal mesas with a side length of 550{mu}m, were identified as slow Bloch photonic crystal modes by means of three-dimensional photonic simulations and measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا