Do you want to publish a course? Click here

Ultrasonic elastic responses in monopole lattice

305   0   0.0 ( 0 )
 Added by Xiao-Xiao Zhang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The latest experimental advances have extended the scenario of coupling mechanical degrees of freedom in chiral magnets (MnSi/MnGe) to the topologically nontrivial skyrmion crystal and even monopole lattices. Equipped with a spin-wave theory highlighting the topological features, we devise an interacting model for acoustic phonons and magnons to explain the experimental findings in a monopole lattice with a topological phase transition, i.e., annihilation of monopole-antimonopole pairs. We reproduce the anisotropic magnetoelastic modulations of elastic moduli: drastic ultrasonic softening around the phase transition and a multi-peak-and-trench fine structure for sound waves parallel and orthogonal to the magnetic field, respectively. Comparison with experiments indicates that the magnetoelastic coupling induced by Dzyaloshinskii-Moriya interaction is comparable to that induced by the exchange interaction. Other possibilities such as elastic hardening are also predicted. The study implies that the monopole defects and their motion in MnGe play a crucial role.



rate research

Read More

We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for MnGe based on the neutron scattering experiment as well as the Lorentz transmission electron microscopy observation. Equipped with a sophisticated spectral analysis method, we adopt finite temperature Greens function technique to calculate the longitudinal dc electric transport in such system. We consider conduction electrons interacting with spin waves of the topologically nontrivial spin texture, wherein fluctuations of monopolar emergent magnetic field enter. We study in detail the behavior of electric resistivity under the influence of temperature, external magnetic field and a characteristic monopole motion, especially a novel magnetoresistivity effect describing the latest experimental observations in MnGe, wherein a topological phase transition signifying strong correlation is identified.
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions (2D), especially in models of closely packed perfect arrays of 1D quantum wires, each being described as a LL. For instance, such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, various quantum Hall states, topological phases, and quantum spin liquids. Despite these exciting theoretical developments, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moire superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moire pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the twist angle between layers. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions, suggesting the formation of 1D channels. The conductance measurement reveals a power-law scaling behavior, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of 2D correlated and topological quantum phases based on coupled-wire models and LL physics.
In many transition-metal oxides and dichalcogenides, the electronic and lattice degrees of freedom are strongly coupled, giving rise to remarkable phenomena, such as metal-insulator transition (MIT) and charge-density wave (CDW) order. We study this interplay by tracing the instant electronic structure under ab initio molecular dynamics. Applying this method to a 1T-TaS2 layer, we show that the CDW-triggered Mott gap undergoes a continuous reduction as the lattice temperature raises, despite a nearly constant CDW amplitude. Before the CDW order undergoes a sharp first-order transition around the room temperature, the dynamical CDW fluctuation already shrinks the Mott gap size by half. The gap size reduction is one order of magnitude larger than the lattice temperature variation. Our calculation not only provides an important clue to understand the thermodynamics behavior in 1T-TaS2, but also demonstrates a general approach to quantify the lattice entropy effect in MIT.
141 - A.S. Sefat , L. Li , H.B. Cao 2015
Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Neel temperature rises with small x, and then falls with additional x. Specifically, we find that Neel and structural transitions in BaFe2As2 (TN =Ts= 133 K) increase for x=0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x=0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.
The spin-crossover in organometallic molecules constitutes one of the most promising routes towards the realization of molecular spintronic devices. In this article, we explore the hybridization-induced spin-crossover in metal-organic complexes. We propose a minimal many-body model that captures the essence of the spin-state switching in a generic parameter space, thus providing insight into the underlying physics. Combining the model with density functional theory (DFT), we then study the spin-crossover in isomeric structures of Ni-porphyrin (Ni-TPP). We show that metal-ligand charge transfer plays a crucial role in the determination of the spin-state in Ni-TPP. Finally, we propose a spin-crossover mechanism based on mechanical strain, which does not require a switch between isomeric structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا