Do you want to publish a course? Click here

Charged Particle Monitor on the AstroSat mission

93   0   0.0 ( 0 )
 Added by Arikkala Rao
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charged Particle Monitor (CPM) on-board the AstroSat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.



rate research

Read More

93 - M. Hernanz 2018
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Wide Field Monitor (WFM). The WFM instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/WFM envisages a wide field X-ray monitor system in the 2-50 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors. The WFM will consist of 3 pairs of coded mask cameras with a total combined Field of View (FoV) of 90x180 degrees at zero response and a source localization accuracy of ~1 arcmin. In this paper we provide an overview of the WFM instrument design, including new elements with respect to the earlier LOFT configuration, and anticipated performance.
159 - Philipp Oleynik 2019
RADMON is a small radiation monitor designed and assembled by students of the University of Turku and the University of Helsinki. It is flown on-board Aalto-1, a 3-unit CubeSat in low Earth orbit at about 500 km altitude. The detector unit of the instrument consists of two detectors, a Si solid-state detector and a CsI(Tl) scintillator, and utilizes the textDelta{E}-E technique to determine the total energy and species of each particle hitting the detector. We present the results of the on-ground and in-flight calibration campaigns of the instrument, as well as the characterization of its response through extensive simulations within the Geant4 framework. The overall energy calibration margin achieved is about 5%. The full instrument response to protons and electrons is presented and the issue of proton contamination of the electron channels is quantified and discussed.
Using a setup for testing a prototype for a satellite-borne cosmic-ray ion detector, we have operated a stack of scintillator and silicon detectors on top of the Princess Sirindhorn Neutron Monitor (PSNM), an NM64 detector at 2560-m altitude at Doi Inthanon, Thailand (18.59 N, 98.49 E). Monte Carlo simulations have indicated that about 15% of the neutron counts by PSNM are due to interactions (mostly in the lead producer) of GeV-range protons among the atmospheric secondary particles from cosmic ray showers, which can be detected by the scintillator and silicon detectors. Those detectors can provide a timing trigger for measurement of the propagation time distribution of such neutrons as they scatter and propagate through the NM64, processes that are similar whether the interaction was initiated by an energetic proton (for 15% of the count rate) or neutron (for 80% of the count rate). This propagation time distribution underlies the time delay distribution between successive neutron counts, from which we can determine the leader fraction (inverse multiplicity), which has been used to monitor Galactic cosmic ray spectral variations over $sim$1-40 GV. Here we have measured and characterized the propagation time distribution from both the experimental setup and Monte Carlo simulations of atmospheric secondary particle detection. We confirm a known propagation time distribution with a peak (at $approx$70 microseconds) and tail over a few ms, dominated by neutron counts. We fit this distribution using an analytic model of neutron diffusion and absorption, for both experimental and Monte Carlo results. In addition we identify a group of prompt neutron monitor pulses that arrive within 20 microseconds of the charged-particle trigger, of which a substantial fraction can be attributed to charged-particle ionization in a proportional counter, according to both experimental and Monte Carlo ...
The NUCLEON-2 experiment is aimed at the investigation of isotope and charge composition of ions from carbon up to trans-uranium elements in the energy range over about a hundred MeV/N. The concept design of the NUCLEON-2 satellite cosmic ray experiment is presented. The performed simulation and preliminary prototype beam test confirms the isotope resolution algorithms and techniques.
We have been developing monolithic active pixel sensors, X-ray Astronomy SOI pixel sensors, XRPIXs, based on a Silicon-On-Insulator (SOI) CMOS technology as soft X-ray sensors for a future Japanese mission, FORCE (Focusing On Relativistic universe and Cosmic Evolution). The mission is characterized by broadband (1-80 keV) X-ray imaging spectroscopy with high angular resolution ($<15$~arcsec), with which we can achieve about ten times higher sensitivity in comparison to the previous missions above 10~keV. Immediate readout of only those pixels hit by an X-ray is available by an event trigger output function implemented in each pixel with the time resolution higher than $10~{rm mu sec}$ (Event-Driven readout mode). It allows us to do fast timing observation and also reduces non-X-ray background dominating at a high X-ray energy band above 5--10~keV by adopting an anti-coincidence technique. In this paper, we introduce our latest results from the developments of the XRPIXs. (1) We successfully developed a 3-side buttable back-side illumination device with an imaging area size of 21.9~mm$times$13.8~mm and an pixel size of $36~{rm mu m} times 36~{rm mu m}$. The X-ray throughput with the device reaches higher than 0.57~kHz in the Event-Driven readout mode. (2) We developed a device using the double SOI structure and found that the structure improves the spectral performance in the Event-Driven readout mode by suppressing the capacitive coupling interference between the sensor and circuit layers. (3) We also developed a new device equipped with the Pinned Depleted Diode structure and confirmed that the structure reduces the dark current generated at the interface region between the sensor and the SiO$_2$ insulator layers. The device shows an energy resolution of 216~eV in FWHM at 6.4~keV in the Event-Driven readout mode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا