Do you want to publish a course? Click here

Photometric and spectroscopic study of the new FUor star V2493 Cyg

148   0   0.0 ( 0 )
 Added by Evgeni Semkov H
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent results from photometric and spectroscopic study of the FUor star V2493 Cyg (HBC 722) are presented in the paper. The outburst of V2493 Cyg was registered during the summer of 2010 before the brightness of the star to reach the maximum value. V2493 Cyg is the first FUor object, whose outburst was observed from its very beginning in all spectral ranges. The recent photometric data show that the star keeps its maximum brightness during the period September 2013 - May 2016 and the recorded amplitude of the outburst is 5.1 mag. (V) Consequently, the outburst of V2493 Cyg lasts for more than six years. Our spectral observations showed strong variability in the profiles and intensity of emission lines especially for H alpha line. We expect that the interest in this object will increase in the coming years and the results will help to explore the nature of young stars.



rate research

Read More

The recent results from photometric study of the new FUor star found in the field of NGC 7000/IC 5070 are presented in the paper. The outburst of V2493 Cyg in the summer of 2010 generated considerable interest among the astronomical community. V2493 Cyg is the first FUor object, whose outburst was observed from its very beginning in all spectral ranges. After reaching the firs maximum in September/October 2010, the brightness of V2493 Cyg declined slowly, having weakened by 1.45 mag. (V) by the spring/early summer of 2011. Since the autumn of 2011, another light increase occurred and the star became brighter by 1.8 mag. (V) until April 2013. The recent photometric data show that the star keeps its maximum brightness during the period April - August 2013 and the recorded amplitude of the outburst reaches Delta V=5.1 mag. Consequently, the outburst of V2493 Cyg lasts for more than three years. We expect that the interest in this object will increase in the coming years and the results will help to explore the nature of young stars.
We present new results from optical photometric and spectroscopic observations of the eruptive pre-main sequence star V2493 Cyg (HBC 722). The object has continued to undergo significant brightness variations over the past few months and is an ideal target for follow-up observations. We carried out CCD BVRI photometric observations in the field of V2493 Cyg (Gulf of Mexico) from August 1994 to April 2012, i.e. at the pre-outburst states and during the phases of the outburst. We acquired high, medium, and low resolution spectroscopy of V2493 Cyg during the outburst. To study the pre-outburst variability of the target and construct its historical light curve, we searched for archival observations in photographic plate collections. Both CCD and photographic observations were analyzed using 15 comparison stars in the field of V2493 Cyg. The pre-outburst photographic and CCD photometric observations of V2493 Cyg show low-amplitude light variations typical of T Tauri stars. The recent photometric data show a slow light decrease from October 2010 to June 2011 followed by an increase in brightness that continued until early 2012. The spectral observations of V2493 Cyg are typical of FU Orionis stars absorption spectra with strong P Cyg profiles of H alpha and Na I D lines. On the basis of photometric monitoring performed over the past two years, the spectral properties at the maximal light, as well as the shape of long-term light curves, we confirm that the observed outburst of V2493 Cyg is of FU Orionis type.
Among the low-mass pre-main sequence stars, a small group called FU Orionis-type objects (FUors) are notable for undergoing powerful accretion outbursts. V1057 Cyg, a classical example of an FUor, went into outburst around 1969-1970, after which it faded rapidly, making it the fastest fading FUor known. Around 1995, a more rapid increase in fading occurred. Since that time, strong photometric modulations have been present. We present nearly 10 years of source monitoring at PiszkestetH{o} Observatory, complemented with optical/near-infrared photometry and spectroscopy from the Nordic Optical Telescope, Bohyunsan Optical Astronomy Observatory, Transiting Exoplanet Survey Satellite, and the Stratospheric Observatory for Infrared Astronomy. Our light curves show continuation of significant quasi-periodic variability in brightness over the past decade. Our spectroscopic observations show strong wind features, shell features, and forbidden emission lines. All of these spectral lines vary with time. We also report the first detection of [S II], [N II], and [O III] lines in the star.
233 - J. Jurcsik , Zs. Hurta , A. Sodor 2009
DM Cyg, a fundamental mode RRab star was observed in the 2007 and 2008 seasons in the frame of the Konkoly Blazhko Survey. Very small amplitude light curve modulation was detected with 10.57 d modulation period. The maximum brightness and phase variations do not exceed 0.07 mag and 7 min, respectively. In spite of the very small amplitude of the modulation, beside the frequency triplets characterizing the Fourier spectrum of the light curve two quintuplet components were also identified. The accuracy and the good phase coverage of our observations made it possible to analyse the light curves at different phases of the modulation separately. Utilizing the IP method (Sodor, Jurcsik and Szeidl, 2009) we could detect very small systematic changes in the global mean physical parameters of DM Cyg during its Blazhko cycle. The detected changes are similar to what we have already found for a large modulation amplitude Blazhko variable MW Lyrae. The amplitudes of the detected changes in the physical parameters of DM Cyg are only about 10% of that what have been found in MW Lyr. This is in accordance with its small modulation amplitude being about one tenth of the modulation amplitude of MW Lyr.
We present results from photometric monitoring of V900 Mon, one of the newly discovered and still under-studied object from FU Orionis type. FUor phenomenon is very rarely observed, but it is essential for stellar evolution. Since we only know about twenty stars of this type, the study of each new object is very important for our knowledge. Our data was obtained in the optical spectral region with BVRI Johnson-Cousins set of filters during the period from September 2011 to April 2021. In order to follow the photometric history of the object, we measured its stellar magnitudes on the available plates from the Mikulski Archive for Space Telescopes. The collected archival data suggests that the rise in brightness of V900 Mon began after January 1989 and the outburst goes so far. In November 2009, when the outburst was registered, the star had already reached a level of brightness close to the current one. Our observations indicate that during the period 2011-2017 the stellar magnitude increased gradually in each pass band. The observed amplitude of the outburst is about 4 magnitudes (R). During the last three years, the increase in brightness has stopped and there has even been a slight decline. The comparison of the light curves of the known FUor objects shows that they are very diverse and are rarely repeated. However, the photometric data we have so far shows that the V900 Mons light curve is somewhat similar to this of V1515 Cyg and V733 Cep.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا