Do you want to publish a course? Click here

Formation of hypernuclei in heavy-ion collisions around the threshold energies

206   0   0.0 ( 0 )
 Added by A Botvina
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In relativistic ion collisions there are excellent opportunities to produce and investigate hyper-nuclei. We have systematically studied the formation of hypernuclear spectator residues in peripheral heavy-ion collisions with the transport DCM and UrQMD models. The hyperon capture was calculated within the potential and coalescence approaches. We demonstrate that even at the beam energies around and lower than the threshold for producing Lambda hyperons in binary nucleon-nucleon interactions a considerable amount of hypernuclei, including multi-strange ones, can be produced. This is important for preparation of new experiments on hypernuclei in the wide energy range. The uncertainties of the predictions are investigated within the models, and the comparison with the strangeness production measured in experiments is also performed.



rate research

Read More

225 - A.S. Botvina 2014
Within a combined approach we investigate the main features of the production of hyper-fragments in relativistic heavy-ion collisions. The formation of hyperons is modelled within the UrQMD and HSD transport codes. To describe the hyperon capture by nucleons and nuclear residues a coalescence of baryons (CB) model was developed. We demonstrate that the origin of hypernuclei of various masses can be explained by typical baryon interactions, and that it is similar to processes leading to the production of conventional nuclei. At high beam energies we predict a saturation of the yields of all hyper-fragments, therefore, this kind of reactions can be studied with high yields even at the accelerators of moderate relativistic energies.
81 - Zhao-Qing Feng 2020
The dynamics of exotic hypernuclei in heavy-ion collisions has been investigated thoroughly with a microscopic transport model. All possible channels on hyperon ($Lambda$, $Sigma$ and $Xi$) production near threshold energies are implemented in the transport model. The light complex fragments (Z$leq$2) are constructed with the Wigner-function method. The classical phase-space coalescence is used for recognizing heavy nuclear and hyperfragments and the statistical model is taken for describing the decay process. The nuclear fragmentation reactions of the available experimental data from the ALADIN collaboration are well reproduced by the combined approach. It is found that the in-medium potentials of strange particles influence the strangeness production and fragment formation. The hyperfragments are mainly created in the projectile or target-like rapidity region and the yields are reduced about the 3-order magnitude in comparison to the nuclear fragments. The hypernuclear dynamics of HypHI data is well described with the model. The possible experiments for producing the neutron-rich hyperfragments at the high-intensity heavy-ion accelerator facility (HIAF) are discussed.
Modeling of the process of the formation of nuclear clusters in the hot nuclear matter is a challenging task. We present the novel n-body dynamical transport approach - PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) [1] for the description of heavy-ion collisions as well as clusters and hpernuclei formation. The PHQMD extends well established PHSD (Parton-Hadron-String Dynamics) approach - which incorporates explicit partonic degrees-of-freedom (quarks and gluons), an equation-of-state from lattice QCD, as well as dynamical hadronization and hadronic elastic and inelastic collisions in the final reaction phase, by n-body quantum molecular dynamic propagation of hadrons which allows choosing of the equation of state with different compression modulus. The formation of clusters, including hypernuclei, is realized by incorporation the Simulated Annealing Clusterization Algorithm (SACA). We present first results from PHQMD on the study of the production rates of strange hadrons, nuclear clusters and hypernuclei in e1elementary and heavy-ion collisions at NICA energies. In particular, sensitivity on the hard and soft equation of state within the PHQMD model was investigated for bulk observables.
159 - A. S. Botvina 2013
Within a dynamical and statistical approach we study the main regularities in production of hypernuclei coming from projectile and target residues in relativistic ion collisions. We demonstrate that yields of hypernuclei increase considerably above the energy threshold for Lambda hyperons, and there is a saturation for yields of single hypernuclei with increasing the beam energy up to few TeV. Production of specific hypernuclei depend very much on the isotopic composition of the projectile, and this gives a chance to obtain exotic hypernuclei that may be difficult to reach in traditional hypernuclear experiments. Possibilities for the detection of such hypernuclei with planned and available relativistic ion facilities are discussed.
We study the formation of large hyper-fragments in relativistic heavy-ion collisions within two transport models, DCM and UrQMD. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semi-peripheral collisions. We investigate basic characteristics of the produced hyper-spectators and evaluate the production probabilities of multi-strange systems. Advantages of the proposed mechanisms over an alternative coalescence mechanism are analysed. We also discuss how such systems can be detected taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hyper-nuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا