Do you want to publish a course? Click here

The survival of gas clouds in the Circumgalactic Medium of Milky Way-like galaxies

116   0   0.0 ( 0 )
 Added by Lucia Armillotta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called circumgalactic medium (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrodynamical simulations of cold (T = 10^4 K) neutral gas clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4 cm^-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (~ 50-150 kpc). We explored the effects of different initial values of relative velocity and radius of the clouds. Our simulations were performed on a two-dimensional grid with constant mesh size (2 pc) and they include radiative cooling, photoionization heating and thermal conduction. We found that for large clouds (radii larger than 250 pc) the cool gas survives for very long time (larger than 250 Myr): despite that they are partially destroyed and fragmented into smaller cloudlets during their trajectory, the total mass of cool gas decreases at very low rates. We found that thermal conduction plays a significant role: its effect is to hinder formation of hydrodynamical instabilities at the cloud-corona interface, keeping the cloud compact and therefore more difficult to destroy. The distribution of column densities extracted from our simulations are compatible with those observed for low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI) once we take into account that OVI covers much more extended regions than the cool gas and, therefore, it is more likely to be detected along a generic line of sight.



rate research

Read More

The circumgalactic medium (CGM) of the Milky Way is mostly obscured by nearby gas in position-velocity space because we reside inside the Galaxy. Substantial biases exist in most studies on the Milky Ways CGM that focus on easier-to-detect high-velocity gas. With mock observations on a Milky-Way analog from the FOGGIE simulation, we investigate four observational biases related to the Milky Ways CGM. First, QSO absorption-line studies probe a limited amount of the CGM mass: only 35% of the mass is at high Galactic latitudes $|b|>20$ degrees, of which only half is moving at $|v_{rm LSR}|gtrsim100$ km s$^{-1}$. Second, the inflow rate ($dot{M}$) of the cold gas observable in HI 21cm is reduced by a factor of $sim10$ as we switch from the local standard of rest to the galaxys rest frame; meanwhile $dot{M}$ of the cool and warm gas does not change significantly. Third, OVI and NV are promising ions to probe the Milky Ways outer CGM ($rgtrsim$15 kpc), but CIV may be less sensitive. Lastly, the scatter in ion column density is a factor of 2 higher if the CGM is observed from inside-out than from external views because of the gas radial density profile. Our work highlights that observations of the Milky Ways CGM, especially those using HI 21cm and QSO absorption lines, are highly biased. We demonstrate that these biases can be quantified and calibrated through synthetic observations with simulated Milky-Way analogs.
Galaxies are surrounded by massive gas reservoirs (i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated Milky Way-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L* galaxies is extremely diverse: column densities of commonly observed species span ~3-4 dex and their covering fractions range from ~5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions (CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L* galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.
169 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
215 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
The Milky Way galaxy is surrounded by a circumgalactic medium (CGM) that may play a key role in galaxy evolution as the source of gas for star formation and a repository of metals and energy produced by star formation and nuclear activity. The CGM may also be a repository for baryons seen in the early universe, but undetected locally. The CGM has an ionized component at temperatures near $2 times 10^{6}$~K studied primarily in the soft X-ray band. Here we report a survey of the southern Galactic sky with a soft X-ray spectrometer optimized to study diffuse soft X-ray emission. The X-ray emission is best fit with a disc-like model based on the radial profile of the surface density of molecular hydrogen, a tracer of star formation, suggesting that the X-ray emission is predominantly from hot plasma produced via stellar feedback. Strong variations in the X-ray emission on angular scales of $sim10^{circ}$ indicate that the CGM is clumpy. Addition of an extended, and possibly massive, halo component is needed to match the halo density inferred from other observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا