Do you want to publish a course? Click here

ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

123   0   0.0 ( 0 )
 Added by Kaustuv Basu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ALMA measurements of a merger shock using the thermal Sunyaev-Zeldovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at $z approx 0.9$. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number ${cal M} = 2.4^{+1.3}_{-0.6}$, which in turn suggests a high value of the magnetic field (of the order of $4-10 ~mu$G) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.



rate research

Read More

The thermal Sunyaev-Zeldovich (SZ) effect presents a relatively new tool for characterizing galaxy cluster merger shocks, traditionally studied through X-ray observations. Widely regarded as the textbook example of a cluster merger bow shock, the western shock front in the Bullet Cluster (1E0657-56) represents the ideal test case for such an SZ study. We aim to reconstruct a parametric model for the shock SZ signal by directly and jointly fitting deep, high-resolution interferometric data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Atacama Compact Array (ACA) in Fourier space. The ALMA+ACA data are primarily sensitive to the electron pressure difference across the shock front. To estimate the shock Mach number $M$, this difference can be combined with the value for the upstream electron pressure derived from an independent Chandra X-ray analysis. In the case of instantaneous electron-ion temperature equilibration, we find $M=2.08^{+0.12}_{-0.12}$, in $approx 2.4sigma$ tension with the independent constraint from Chandra, $M_X=2.74pm0.25$. The assumption of purely adiabatic electron temperature change across the shock leads to $M=2.53^{+0.33}_{-0.25}$, in better agreement with the X-ray estimate $M_X=2.57pm0.23$ derived for the same heating scenario. We have demonstrated that interferometric observations of the SZ effect provide constraints on the properties of the shock in the Bullet Cluster that are highly complementary to X-ray observations. The combination of X-ray and SZ data yields a powerful probe of the shock properties, capable of measuring $M$ and addressing the question of electron-ion equilibration in cluster shocks. Our analysis is however limited by systematics related to the overall cluster geometry and the complexity of the post-shock gas distribution. To overcome these limitations, a joint analysis of SZ and X-ray data is needed.
We present the on-going activity to characterize the geometrical properties of the gas and dark matter haloes using multi-wavelength observations of galaxy clusters. The role of the SZ signal in describing the gas distribution is discussed for the pilot case of the CLASH object MACS J1206.2-0847. Preliminary images of the NIKA2 and ALMA exposures are presented.
502 - M. J. Jee 2009
We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the >~ 8 sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass, where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1-sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z >~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of the cluster within the survey volume is a rare event with a probability < 1%, and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.
The Sunyaev-Zeldovich (SZ) effect was first predicted nearly five decades ago, but has only recently become a mature tool for performing high resolution studies of the warm and hot ionized gas in and between galaxies, groups, and clusters. Galaxy groups and clusters are powerful probes of cosmology, and they also serve as hosts for roughly half of the galaxies in the Universe. In this white paper, we outline the advances in our understanding of thermodynamic and kinematic properties of the warm-hot universe that can come in the next decade through spatially and spectrally resolved measurements of the SZ effects. Many of these advances will be enabled through new/upcoming millimeter/submillimeter (mm/submm) instrumentation on existing facilities, but truly transformative advances will require construction of new facilities with larger fields of view and broad spectral coverage of the mm/submm bands.
124 - Adam B. Mantz 2020
We present results from a 577 ks XMM-Newton observation of SPT-CL J0459-4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev-Zeldovich effect. The data confirm the clusters high redshift, $z=1.71 pm 0.02$, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $M_{500}=(1.8 pm 0.2) times 10^{14}M_{Sun}$; cluster emission is detected above the background to a radius of $sim 2.2 r_{500}$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of $7.2 pm 0.3$ keV and metallicity with respect to Solar of $0.37 pm 0.08$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster center; at radii $r > 0.3 r_{500}$, we find it to be $0.33 pm 0.17$, in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا