Do you want to publish a course? Click here

Scaling Relations of Starburst-Driven Galactic Winds

169   0   0.0 ( 0 )
 Added by Ryan Tanner
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using synthetic absorption lines generated from 3D hydro-dynamical simulations we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations until the scaling relations flatten abruptly at a point set by the mass loading of the starburst. Below this point the scaling relation depends on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas is four to five times lower than the average velocity of the hottest gas, with the difference in velocity between the neutral and ionized gas increasing with gas ionization. Thus, absorption lines of neutral or low ionized gas will underestimate the outflow velocity of hot gas, severely underestimating outflow energetics.



rate research

Read More

Nearby dwarf galaxies exhibit tight correlations between their global stellar and dynamical properties, such as circular velocity, mass-to-light ratio, stellar mass, surface brightness, and metallicity. Such correlations have often been attributed to gas or metal-rich outflows driven by supernova energy feedback to the interstellar medium. We use high-resolution cosmological simulations of high-redshift galaxies with and without energy feedback, as well as analytic modeling, to investigate whether the observed correlations can arise without supernova-driven outflows. We find that the simulated dwarf galaxies exhibit correlations similar to those observed as early as z~10, regardless of whether supernova feedback is included. We also show that the correlations can be well reproduced by our analytic model that accounts for realistic gas inflow but assumes no outflows, and star formation rate obeying the Kennicutt-Schmidt law with a critical density threshold. We argue that correlations in simulated galaxies arise due to the increasingly inefficient conversion of gas into stars in low-mass dwarf galaxies rather than supernova-driven outflows. We also show that the decrease of the observed effective yield in low-mass objects, often used as an indicator of gas and metal outflows, can be reasonably reproduced in our simulations without outflows. We show that this trend can arise if a significant fraction of metals in small galaxies is spread to the outer regions of the halo outside the stellar extent via mixing. In this case the effective yield can be significantly underestimated if only metals within the stellar radius are taken into account. Measurements of gas metallicity in the outskirts of gaseous disks of dwarfs would thus provide a key test of such explanation.
We study the galactic wind in the edge-on spiral galaxy UGC 10043 with the combination of the CALIFA integral field spectroscopy data, scanning Fabry-Perot interferometry (FPI), and multiband photometry. We detect ionized gas in the extraplanar regions reaching a relatively high distance, up to ~ 4 kpc above the galactic disk. The ionized gas line ratios ([N ii]/Ha, [S ii]/Ha and [O i]/Ha) present an enhancement along the semi minor axis, in contrast with the values found at the disk, where they are compatible with ionization due to H ii-regions. These differences, together with the biconic symmetry of the extra-planar ionized structure, makes UGC 10043 a clear candidate for a galaxy with gas outflows ionizated by shocks. From the comparison of shock models with the observed line ratios, and the kinematics observed from the FPI data, we constrain the physical properties of the observed outflow. The data are compatible with a velocity increase of the gas along the extraplanar distances up to < 400 km/s and the preshock density decreasing in the same direction. We also observe a discrepancy in the SFR estimated based on Ha (0.36 Msun/yr ) and the estimated with the CIGALE code, being the latter 5 times larger. Nevertheless, this SFR is still not enough to drive the observed galactic wind if we do not take into account the filling factor. We stress that the combination of the three techniques of observation with models is a powerful tool to explore galactic winds in the Local Universe.
79 - Ryan Tanner , Gerald Cecil , 2015
Our three-dimensional hydro-dynamical simulations of starbursts examine the formation of superbubbles over a range of driving luminosities and mass loadings that determine superbubble growth and wind velocity. From this we determine the relationship between the velocity of a galactic wind and the power of the starburst. We find a threshold for the formation of a wind, above which the speed of the wind is not affected by grid resolution or the temperature floor of our radiative cooling. We investigate the effect two different temperature floors in our radiative cooling prescription have on wind kinematics and content. We find that cooling to $10$ K instead of to $10^4$ K increases the mass fraction of cold neutral and hot X-ray gas in the galactic wind while halving that in warm H$alpha$. Our simulations show the mass of cold gas transported into the lower halo does not depend on the starburst strength. Optically bright filaments form at the edge of merging superbubbles, or where a cold dense cloud has been disrupted by the wind. Filaments formed by merging superbubbles will persist and grow to $>400$ pc in length if anchored to a star forming complex. Filaments embedded in the hot galactic wind contain warm and cold gas that moves $300-1200$ km s$^{-1}$ slower than the surrounding wind, with the coldest gas hardly moving with respect to the galaxy. Warm and cold matter in the galactic wind show asymmetric absorption profiles consistent with observations, with a thin tail up to the wind velocity.
286 - S. Recchia , P. Blasi , G. Morlino 2016
The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfven waves.
138 - C. M. Booth 2013
We present results from high-resolution hydrodynamic simulations of isolated SMC- and Milky Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading factors of up to ~10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with propto v_c^{1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to SN driven winds, where most of the acceleration happens violently in situ near star forming sites. In contrast, the CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T~10^4 K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا