Do you want to publish a course? Click here

Finite-size scaling effect on Neel temperature of antiferromagnetic Cr$_2$O$_3$-(0001) films in an exchange-coupled heterostructure

65   0   0.0 ( 0 )
 Added by Muftah Al-Mahdawi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scaling of antiferromagnetic ordering temperature of corundum-type chromia films have been investigated. Neel temperature $T_N$ was determined from the effect of perpendicular exchange-bias on the magnetization of a weakly-coupled adjacent ferromagnet. For a thick-film case, the validity of detection is confirmed by a susceptibility measurement. Detection of $T_N$ was possible down to 1-nm-thin chromia films. The scaling of ordering temperature with thickness was studied using different buffering materials, and compared with Monte-Carlo simulations. The spin-correlation length and the corresponding critical exponent were estimated, and they were consistent between experimental and simulation results. The spin-correlation length is an order of magnitude less than cubic antiferromagnets. We propose that the difference is from the change of number of exchange-coupling links in the two crystal systems.



rate research

Read More

We report the direct observation of switching of the Neel vector of antiferromagnetic (AFM) domains in response to electrical pulses in micron-scale Pt/$alpha$-Fe$_2$O$_3$ Hall bars using photoemission electron microscopy. Current pulses lead to reversible and repeatable switching, with the current direction determining the final state, consistent with Hall effect experiments that probe only the spatially averaged response. Current pulses also produce irreversible changes in domain structure, in and even outside the current path. In both cases only a fraction of the domains switch in response to pulses. Further, analysis of images taken with different x-ray polarizations shows that the AFM Neel order has an out-of-plane component in equilibrium that is important to consider in analyzing the switching data. These results show that -in addition to effects associated with spin-orbit torques from the Pt layer, which can produce reversible switching-changes in AFM order can be induced by purely thermal effects.
The ability to manipulate antiferromagnetic (AF) moments is a key requirement for the emerging field of antiferromagnetic spintronics. Electrical switching of bi-state AF moments has been demonstrated in metallic AFs, CuMnAs and Mn$_2$Au. Recently, current-induced saw-tooth shaped Hall resistance was reported in Pt/NiO bilayers, while its mechanism is under debate. Here, we report the first demonstration of convincing, non-decaying, step-like electrical switching of tri-state Neel order in Pt/$alpha$-Fe$_2$O$_3$ bilayers. Our experimental data, together with Monte-Carlo simulations, reveal the clear mechanism of the switching behavior of $alpha$-Fe$_2$O$_3$ Neel order among three stable states. We also show that the observed saw-tooth Hall resistance is due to an artifact of Pt, not AF switching, while the signature of AF switching is step-like Hall signals. This demonstration of electrical control of magnetic moments in AF insulator (AFI) films will greatly expand the scope of AF spintronics by leveraging the large family of AFIs.
We study the evolution of magnetoresistance with temperature in thin film bilayers consisting of platinum and the antiferromagnet Cr$_2$O$_3$ with its easy axis out of the plane. We vary the temperature from 20 - 60{deg}C, close to the Neel temperature of Cr$_2$O$_3$ of approximately 37{deg}C. The magnetoresistive response is recorded during rotations of the external magnetic field in three mutually orthogonal planes. A large magnetoresistance having a symmetry consistent with a positive spin Hall magnetoresistance is observed in the paramagnetic phase of the Cr$_2$O$_3$, which however vanishes when cooling to below the Neel temperature. Comparing to analogous experiments in a Gd$_3$Ga$_5$O$_{12}$/Pt heterostructure, we conclude that a paramagnetic field induced magnetization in the insulator is not sufficient to explain the observed magnetoresistance. We speculate that the type of magnetic moments at the interface qualitatively impacts the spin angular momentum transfer, with the $3d$ moments of Cr sinking angular momentum much more efficiently as compared to the more localized $4f$ moments of Gd.
117 - Lin He , Chinping Chen , Ning Wang 2007
Finite size effect on the antiferromagnetic transition temperature, TN, of Co3O4 nanoparticles of 75, 35, and 16 nm in diameter, has been investigated. The AFM transition point, TN, reduces with the decreasing diameter, d. Along with the results from the previous experiments on the Co3O4 nanoparticles of 8 and 4.3 nm, the variation of TN with d appears to follow the finite size relation. According to the scaling behavior, the shift exponent is determined as lambda = 1.4 pm 0.4, the correlation length, ksi_0 = 3.0 pm 0.3 nm, and the bulk Neel temperature, TN(infint) = 38.6 pm 0.7 K.
Cr$_2$O$_3$ is the archetypal magnetoelectric (ME) material, which has a linear coupling between electric and magnetic polarizations. Quadratic ME effects are forbidden for the magnetic point group of Cr$_2$O$_3$, due to space-time inversion symmetry. In Cr$_2$O$_3$ films grown by sputtering, we find a signature of a quadratic ME effect that is not found in bulk single crystals. We use Raman spectroscopy and magetization measurements to deduce the removal of space-time symmetry, and corroborate the emergence of the quadratic ME effect. We propose that meta-stable site-selective trace dopants remove the space, time, and space-time inversion symmetries from the original magnetic point group of bulk Cr$_2$O$_3$. We include the quadratic ME effect in a model describing the switching process during ME field cooling, and estimate the effective quadratic susceptibility value. The quadratic magnetoelectric effect in a uniaxial antiferromagnet is promising for multifunctional antiferromagnetic and magnetoelectric devices that can incorporate optical, strain-induced, and multiferroic effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا