Generalized Assignment Problem: Truthful Mechanism Design without Money


Abstract in English

In this paper, we study a problem of truthful mechanism design for a strategic variant of the generalized assignment problem (GAP) in a both payment-free and prior-free environment. In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, bins are held by strategic agents, and each agent may hide its compatibility with some items in order to obtain items of higher values. The compatibility between an agent and an item encodes the willingness of the agent to receive the item. Our goal is to maximize total value (sum of agents values, or social welfare) while certifying no agent can benefit from hiding its compatibility with items. The model has applications in auctions with budgeted bidders. For two variants of the problem, namely emph{multiple knapsack problem} in which each item has the same size and value over bins, and emph{density-invariant GAP} in which each item has the same value density over the bins, we propose truthful $4$-approximation algorithms. For the general problem, we propose an $O(ln{(U/L)})$-approximation mechanism where $U$ and $L$ are the upper and lower bounds for value densities of the compatible item-bin pairs.

Download