Do you want to publish a course? Click here

Half-BPS half-BPS twist two at four loops in N=4 SYM

213   0   0.0 ( 0 )
 Added by Burkhard Eden
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We consider a double OPE limit of the planar four-point function of stress tensor multiplets in N = 4 SYM theory. Loop integrands for this correlator have been constructed to very high order, but the corresponding integrals are explicitly known only up to three loops. Fortunately, the double coincidence limit of the four-loop integrals can be found by the method of expansion by regions, which reduces the problem of computing the four-point integrals to the evaluation of a large set of massless propagator integrals. These can in turn be evaluated by IBP reduction. The OPE limit of the stress tensor four-point function allows us to extract the (square of the) three-point couplings between two stress tensor multiplets and one twist two operator in the 20 of SU(4). The latest available IBP software accomplishes this task up to and including spin 8. With the data obtained we hope to further the development of the recent integrable systems picture for correlation functions.



rate research

Read More

We obtain all planar four-point correlators of half-BPS operators in $mathcal{N}=4$ SYM up to five loops. The ansatz for the integrand is fixed partially by imposing light-cone OPE relations between different correlators. We then fix the integrated correlators by comparing their asymptotic expansions with simple data obtained from integrability. We extract OPE coefficients and find a prediction for the triple wrapping correction of the hexagon form factors, which contributes already at the five-loop order.
59 - E. DHoker , P. Heslop , P. Howe 2003
A systematic construction is presented of 1/4 BPS operators in N=4 superconformal Yang-Mills theory, using either analytic superspace methods or components. In the construction, the operators of the classical theory annihilated by 4 out of 16 supercharges are arranged into two types. The first type consists of those operators that contain 1/4 BPS operators in the full quantum theory. The second type consists of descendants of operators in long unprotected multiplets which develop anomalous dimensions in the quantum theory. The 1/4 BPS operators of the quantum theory are defined to be orthogonal to all the descendant operators with the same classical quantum numbers. It is shown, to order $g^2$, that these 1/4 BPS operators have protected dimensions.
214 - M. Billo , F. Galvagno , A. Lerda 2019
We consider the 1/2 BPS circular Wilson loop in a generic N=2 SU(N) SYM theory with conformal matter content. We study its vacuum expectation value, both at finite $N$ and in the large-N limit, using the interacting matrix model provided by localization results. We single out some families of theories for which the Wilson loop vacuum expectation values approaches the N=4 result in the large-N limit, in agreement with the fact that they possess a simple holographic dual. At finite N and in the generic case, we explicitly compare the matrix model result with the field-theory perturbative expansion up to order g^8 for the terms proportional to the Riemann value zeta(5), finding perfect agreement. Organizing the Feynman diagrams as suggested by the structure of the matrix model turns out to be very convenient for this computation.
We study four-point correlation functions of half-BPS operators of arbitrary weight for all dimensions d=3,4,5,6 where superconformal theories exist. Using harmonic superspace techniques, we derive the superconformal Ward identities for these correlators and present them in a universal form. We then solve these identities, employing Jack polynomial expansions. We show that the general solution is parameterized by a set of arbitrary two-variable functions, with the exception of the case d=4, where in addition functions of a single variable appear. We also discuss the operator product expansion using recent results on conformal partial wave amplitudes in arbitrary dimension.
We propose a mechanism for calculating anomalous dimensions of higher-spin twist-two operators in N=4 SYM. We consider the ratio of the two-point functions of the operators and of their superconformal descendants or, alternatively, of the three-point functions of the operators and of the descendants with two protected half-BPS operators. These ratios are proportional to the anomalous dimension and can be evaluated at n-1 loop in order to determine the anomalous dimension at n loops. We illustrate the method by reproducing the well-known one-loop result by doing only tree-level calculations. We work out the complete form of the first-generation descendants of the twist-two operators and the scalar sector of the second-generation descendants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا