No Arabic abstract
We explore the ability of current and future dark matter and collider experiments in probing anomalous magnetic moment of the muon, $(g-2)_mu$, within the Minimal Supersymmetric Standard Model (MSSM). We find that the latest PandaX-II/LUX-2016 data gives a strong constraint on parameter space that accommodates the $(g-2)_{mu}$ within $2sigma$ range, which will be further excluded by the upcoming XENON-1T (2017) experiment. We also find that a 100 TeV $pp$ collider can cover most of our surviving samples that satisfy DM relic density within $3sigma$ range through $Z$ or $h$ resonant effect by searching for trilepton events from $tilde{chi}^0_2tilde{chi}^+_1$ associated production. While the samples that are beyond future sensitivity of trilepton search at a 100 TeV $pp$ collider and the DM direct detections are either higgsino/wino-like LSPs or bino-like LSPs co-annihilating with sleptons. Such compressed regions may be covered by the monojet(-like) searches at a 100 TeV $pp$ collider.
In this letter, we show that the wino-Higgsino dark matter (DM) is detectable in near future DM direct detection experiments for almost all consistent parameter space in the spontaneously broken supergravity (SUGRA) if the muon g-2 anomaly is explained by the wino-Higgsino loop diagrams. We also point out that the present and future LHC experiments can exclude or confirm this SUGRA explanation of the observed muon g-2 anomaly.
The discrepancy between the measured value and the Standard Model prediction for the muon anomalous magnetic moment is one of the important issues in the particle physics. In this paper, we consider a two Higgs doublet model (2HDM) where the extra Higgs doublet couples to muon and tau in lepton flavor violating (LFV) way and the one-loop correction involving the scalars largely contributes to the muon anomalous magnetic moment. The couplings should be sizable to explain the discrepancy, so that the extra Higgs bosons would dominantly decay into $mutau$ LFV modes, which makes the model testable at the LHC through multi-lepton signatures even though they are produced via the electroweak interaction. We discuss the current status and the future prospect for the extra Higgs searches at the LHC, and demonstrate the reconstruction of the mass spectrum using the multi-lepton events.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For the general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
The LHCb measurements of the $mu / e$ ratio in $B to K ell ell$ decays $(R_{K^{}})$ indicate a deficit with respect to the Standard Model prediction, supporting earlier hints of lepton universality violation observed in the $R_{K^{(*)}}$ ratio. Possible explanations of these $B$-physics anomalies include heavy $Z$ bosons or leptoquarks mediating $b to s mu^+ mu^- $. We note that a muon collider can directly measure this process via $mu^+ mu^- to b bar s$ and can shed light on the lepton non-universality scenario. Investigating currently discussed center-of-mass energies $sqrt{s} = 3$, 6 and 10 TeV, we show that the parameter space of $Z$ and $S_3$ leptoquark solutions to the $R_{K^{(*)}}$ anomalies can be mostly covered. Effective operators explaining the anomalies can be probed with the muon collider setup $sqrt{s} = 6~{rm TeV}$ and integrated luminosity $L = 4~{rm ab^{-1}}$.
We report the results of a search for a new vector boson ($A$) decaying into two dark matter particles $chi_1 chi_2$ of different mass. The heavier $chi_2$ particle subsequently decays to $chi_1$ and $A to e^- e^+$. For a sufficiently large mass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in the muon anomalous magnetic moment at Fermilab. Remarkably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained re-analyzing the previous NA64 searches for an invisible decay $Ato chi overline{chi}$ and axion-like or pseudo-scalar particles $a to gamma gamma$. With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for $A$ masses from 2$m_e$ up to 390 MeV and mixing parameter $epsilon$ between $3times10^{-5}$ and $2times10^{-2}$.