Do you want to publish a course? Click here

Stochastic competitive exclusion leads to a cascade of species extinctions

128   0   0.0 ( 0 )
 Added by Jose A Capitan
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

Community ecology has traditionally relied on the competitive exclusion principle, a piece of common wisdom in conceptual frameworks developed to describe species assemblages. Key concepts in community ecology, such as limiting similarity and niche partitioning, are based on competitive exclusion. However, this classical paradigm in ecology relies on implications derived from simple, deterministic models. Here we show how the predictions of a symmetric, deterministic model about the way extinctions proceed can be utterly different from the results derived from the same model when ecological drift (demographic stochasticity) is explicitly considered. Using analytical approximations to the steady-state conditional probabilities for assemblages with two and three species, we demonstrate that stochastic competitive exclusion leads to a cascade of extinctions, whereas the symmetric, deterministic model predicts a multiple collapse of species. To test the robustness of our results, we have studied the effect of environmental stochasticity and relaxed the species symmetry assumption. Our conclusions highlight the crucial role of stochasticity when deriving reliable theoretical predictions for species community assembly.



rate research

Read More

262 - Xin Wang , Yang-Yu Liu 2018
Explaining biodiversity in nature is a fundamental problem in ecology. An outstanding challenge is embodied in the so-called Competitive Exclusion Principle: two species competing for one limiting resource cannot coexist at constant population densities, or more generally, the number of consumer species in steady coexistence cannot exceed that of resources. The fact that competitive exclusion is rarely observed in natural ecosystems has not been fully understood. Here we show that by forming chasing triplets among the consumers and resources in the consumption process, the Competitive Exclusion Principle can be naturally violated. The modeling framework developed here is broadly applicable and can be used to explain the biodiversity of many consumer-resource ecosystems and hence deepens our understanding of biodiversity in nature.
Microbial electrolysis cells (MECs) employ electroactive bacteria to perform extracellular electron transfer, enabling hydrogen generation from biodegradable substrates. In previous work, we developed and analyzed a differential-algebraic equation (DAE) model for MECs. The model resembles a chemostat with ordinary differential equations (ODEs) for concentrations of substrate, microorganisms, and an extracellular mediator involved in electron transfer. There is also an algebraic constraint for electric current and hydrogen production. Our goal is to determine the outcome of competition between methanogenic archaea and electroactive bacteria, because only the latter contribute to electric current and resulting hydrogen production. We investigate asymptotic stability in two industrially releva
Cooperative interactions pervade the dynamics of a broad rage of many-body systems, such as ecological communities, the organization of social structures, and economic webs. In this work, we investigate the dynamics of a simple population model that is driven by cooperative and symmetric interactions between two species. We develop a mean-field and a stochastic description for this cooperative two-species reaction scheme. For an isolated population, we determine the probability to reach a state of fixation, where only one species survives, as a function of the initial concentrations of the two species. We also determine the time to reach the fixation state. When each species can migrate into the population and replace a randomly selected individual, the population reaches a steady state. We show that this steady-state distribution undergoes a unimodal to trimodal transition as the migration rate is decreased beyond a critical value. In this low-migration regime, the steady state is not truly steady, but instead fluctuates strongly between near-fixation states of the two species. The characteristic time scale of these fluctuations diverges as $lambda^{-1}$.
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models we demonstrate the emergence of a new long timescale governing the epidemic in broad agreement with empirical data. Our model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of the long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to the endemic state.
By challenging E. coli with sublethal norfloxacin for 10 days, Henry Lee and James Collins suggests the bacterial altruism leads to the population-wide resistance. By detailedly analyzing experiment data, we suggest that bacterial cooperation leads to population-wide resistance under norfloxacin pressure and simultaneously propose the bacteria shield is the possible feedback mechanism of less resistant bacteria. The bacteria shield is that the less resistant bacteria sacrifice the large number of themselves to consume norfloxacin and then to relieve the norfloxacin burden from highly resistant bacteria. Thus, due to highly resistant bacteria and less resistant bacteria extracted from the same bacteria population, bacterial cooperation leads to heteroresistance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا