No Arabic abstract
Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONIER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms are at play. Finally, we found that the use of existing SB2 radial velocity amplitudes can lead to unrealistic masses and distances. If not understood, the biases in radial velocity amplitudes will represent an intrinsic limitation for estimating dynamical masses from SB2+interferometry or SB2+Gaia. Nevertheless, our results can be combined with future Gaia astrometry to measure the dynamical masses and distances of the individual components with an accuracy of 5 to 15%, completely independently of the radial velocities.
We present spectroscopic orbits for the active stars HD 82159 (GS Leo), HD 89959, BD +39 2587 (a visual companion to HD 112733), HD 138157 (OX Ser), HD 143705, and HD 160934. This paper is a sequel to one published in this journal in 2006, with similar avowed intention, by Galvez et al.. They showed only graphs, and gave no data, and no orbital elements apart from the periods (only two of which were correct) and in some cases the eccentricities. Here we provide full information and reliable orbital elements for all the stars apart from HD 160934, which has not completed a cycle since it was first observed for radial velocity.
Preparing for the expected wealth of Gaia detections, we consider here a simple algorithm for classifying unresolved astrometric binaries with main-sequence (MS) primary into three classes: binaries with a probable MS secondary, with two possible values for the mass ratio; probable hierarchical triple MS systems with an astrometric secondary as a close binary, with a limited range of mass-ratio values; and binaries with a compact-object secondary, with a minimal value of the mass ratio. This is done by defining a unit-less observational parameter Astrometric Mass-Ratio Function (AMRF), $mathcal{A}$, of a binary, based on primary-mass estimation, in addition to the astrometric parameters - the angular semi-major axis, the period and the parallax. We derive the $mathcal{A}$ value that differentiates the three classes by forward modeling representative binaries of each class, assuming some mass-luminosity relation.To demonstrate the potential of the algorithm, we consider the orbits of 98 Hipparcos astrometric binaries with main-sequence primaries, using the Hipparcos parallaxes and the primary-mass estimates. For systems with known spectroscopic orbital solution, our results are consistent with the spectroscopic elements, validating the suggested approach. The algorithm will be able to identify hierarchical triple systems and dormant neutron-star and black-hole companions in the Gaia astrometric binaries.
In the last decade or so, there have been numerous searches for hot subdwarfs in close binaries. There has been little to no attention paid to wide binaries however. The advantages of understanding these systems can be many. The stars can be assumed to be coeval, which means they have common properties. The distance and metallicity, for example, are both unknown for the subdwarf component, but may be determinable for the secondary, allowing other properties of the subdwarf to be estimated. With this in mind, we have started a search for common proper motion pairs containing a hot subdwarf component. We have uncovered several promising candidate systems, which are presented here.
The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (vrot) for components of 114 spectroscopic binaries in 30 Doradus. The vrot values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. vrot calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall vrot distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at $vrot < 200$ kms) and a shoulder at intermediate velocities ($200 < vrot < 300$ kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at $vrot sim$100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.
We present results from Speckle inteferometric observations of fifteen visual binaries and one double-line spectroscopic binary, carried out with the HRCam Speckle camera of the SOAR 4.1 m telescope. These systems were observed as a part of an on-going survey to characterize the binary population in the solar vicinity, out to a distance of 250 parsec. We obtained orbital elements and mass sums for our sample of visual binaries. The orbits were computed using a Markov Chain Monte Carlo algorithm that delivers maximum likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate their uncertainty. Their periods cover a range from 5 yr to more than 500 yr; and their spectral types go from early A to mid M - implying total system masses from slightly more than 4 MSun down to 0.2 MSun. They are located at distances between approximately 12 and 200 pc, mostly at low Galactic latitude. For the double-line spectroscopic binary YSC8 we present the first combined astrometric/radial velocity orbit resulting from a self-consistent fit, leading to individual component masses of 0.897 +/- 0.027 MSun and 0.857 +/- 0.026 MSun; and an orbital parallax of 26.61 +/- 0.29 mas, which compares very well with the Gaia DR2 trigonometric parallax (26.55 +/- 0.27 mas). In combination with published photometry and trigonometric parallaxes, we place our objects on an H-R diagram and discuss their evolutionary status. We also present a thorough analysis of the precision and consistency of the photometry available for them.