No Arabic abstract
The weakly bound exotic ${}^{11}$Be nucleus, famous for its ground-state parity inversion and distinct n+ ${}^{10}$Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces. An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the ${}^{11}$Be spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition between the bound states is reproduced. We compare our photodisintegration calculations to conflicting experimental data and predict a distinct dip around the $3/2^-_1$ resonance energy. Finally, we predict low-lying $3/2^+$ and $9/2^+$ resonances that are not or not sufficiently measured in experiments.
In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear theory for calculations of superallowed Fermi $beta$-decay. Using the valence-space in-medium similarity renormalization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements for all T=1 isobaric analogue triplets of relevance to superallowed $beta$-decay for masses A=10 to A=74 and find an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are likely not responsible for the observed discrepancies.
The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Greens function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demanding that the experimental charge density distribution and the root mean square radius of $^{36}$S are well reproduced, along with $^{34}$Si and $^{36}$S binding energies, only leaves the NNLO$_{text{sat}}$ Hamiltonian as a serious candidate to perform this prediction. In this context, a bubble structure, whose fingerprint should be visible in an electron scattering experiment of $^{34}$Si, is predicted. Furthermore, a clear correlation is established between the occurrence of the bubble structure and the weakening of the 1/2$^-$-3/2$^-$ splitting in the spectrum of $^{35}$Si as compared to $^{37}$S.
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the $J^pi = {1/2}^-,{3/2}^-,{7/2}^-,{3/2}^+$ states in $^{17,23,25}$O, and - contrary to naive shell-model expectations - the level ordering of the $J^pi = {3/2}^+,{5/2}^+,{9/2}^+$ states in $^{53,55,61}$Ca.
We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function method. Starting from two- and three-nucleon interactions from chiral effective field theory, we investigate the electric monopole, dipole, and quadrupole response of the even oxygen isotopes from 16-O to 24-O. The method describes the full energy range from low-lying excitations to the giant resonance region and beyond in a unified and consistent framework, including a complete description of fragmentation and fine-structure. This opens unique opportunities for understanding dynamic properties of nuclei from first principles and to further constrain nuclear interactions. We demonstrate the computational efficiency and the robust model-space convergence of our approach and compare to established approximate methods, such as the Random Phase Approximation, shedding new light on their deficiencies.
No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, identified by strong intraband E2 transitions and by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. However, convergence rates differ significantly for different rotational observables and for different rotational bands. The choice of internucleon interaction may also substantially impact the convergence rates. Consequently, there is a substantial gap between simply observing the qualitative emergence of rotation in ab initio calculations and actually carrying out detailed quantitative comparisons. In this contribution, we illustrate the convergence properties of rotational band energy parameters extracted from NCCI calculations, and compare these predictions with experiment, for the isotopes 7-11Be, and for the JISP16 and Daejeon16 interactions.