Do you want to publish a course? Click here

Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

65   0   0.0 ( 0 )
 Added by Arindam Ghosh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. By the time the flow reaches the inner edge, the variation in X-rays needs not reflect the true variation of the rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale also to spread around a mean value. In HMXBs, the size of the viscous Keplerian disk is smaller & thus such a spread could be lower as compared to the LMXBs. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a full knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales when there is an ellipticity in the orbit. We study a few compact binaries using long term RXTE/ASM(1.5-12 keV) & Swift/BAT(15-50keV) data to look for such effects & to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation & found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in HMXBs the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in LMXBs with larger Keplerian disk, the peaks are spread out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of the Keplerian disk. Our result confirms different sizes of Keplerian disks in 2 classes of binaries. If the orbital period of a binary system is not known, it may be obtained with reasonable accuracy for HMXBs & with lesser accuracy for LMXBs by our method.



rate research

Read More

Analytical investigation of time-dependent accretion in disks is carried out. We consider a time-dependent disk in a binary system at outburst which has a fixed tidally-truncated outer radius. The standard Shakura-Sunyaev model of the disk is considered. The vertical structure of the disk is accurately described in two regimes of opacity: Thomson and free-free. Fully analytical solutions are obtained, characterized by power-law variations of accretion rate with time. The solutions supply asymptotic description of disk evolution in flaring sources in the periods after outbursts while the disk is fully ionized. The X-ray flux of multicolor (black-body) alpha-disk is obtained as varying quasi-exponentially. Application to X-ray novae is briefly discussed concerning the observed faster-than-power decays of X-ray light curves. The case of time-dependent advective disk when the exponential variations of accretion rate can occur is discussed.
142 - Robert I. Hynes 2010
This work is intended to provide an introduction to multiwavelength observations of low-mass X-ray binaries and the techniques used to analyze and interpret their data. The focus will primarily be on ultraviolet, optical, and infrared observations and their connections to other wavelengths. The topics covered include: outbursts of soft X-ray transients, accretion disk spectral energy distributions, orbital lightcurves in luminous and quiescent states, super-orbital and sub-orbital variability, line spectra, system parameter determinations, and echo-mapping and other rapid correlated variability.
Axisymmetric magnetorotational instability (MRI) in viscous accretion disks is investigated by linear analysis and two-dimensional nonlinear simulations. The linear growth of the viscous MRI is characterized by the Reynolds number defined as $R_{rm MRI} equiv v_A^2/ uOmega $, where $v_A$ is the Alfv{e}n velocity, $ u$ is the kinematic viscosity, and $Omega$ is the angular velocity of the disk. Although the linear growth rate is suppressed considerably as the Reynolds number decreases, the nonlinear behavior is found to be almost independent of $R_{rm MRI}$. At the nonlinear evolutionary stage, a two-channel flow continues growing and the Maxwell stress increases until the end of calculations even though the Reynolds number is much smaller than unity. A large portion of the injected energy to the system is converted to the magnetic energy. The gain rate of the thermal energy, on the other hand, is found to be much larger than the viscous heating rate. Nonlinear behavior of the MRI in the viscous regime and its difference from that in the highly resistive regime can be explained schematically by using the characteristics of the linear dispersion relation. Applying our results to the case with both the viscosity and resistivity, it is anticipated that the critical value of the Lundquist number $S_{rm MRI} equiv v_A^2/etaOmega$ for active turbulence depends on the magnetic Prandtl number $S_{{rm MRI},c} propto Pm^{1/2}$ in the regime of $Pm gg 1$ and remains constant when $Pm ll 1$, where $Pm equiv S_{rm MRI}/R_{rm MRI} = u/eta$ and $eta$ is the magnetic diffusivity.
103 - James Guillochon 2009
We present three-dimensional simulations on a new mechanism for the detonation of a sub-Chandrasekhar CO white dwarf in a dynamically unstable system where the secondary is either a pure He white dwarf or a He/CO hybrid. For dynamically unstable systems where the accretion stream directly impacts the surface of the primary, the final tens of orbits can have mass accretion rates that range from $10^{-5}$ to $10^{-3} M_{odot}$ s$^{-1}$, leading to the rapid accumulation of helium on the surface of the primary. After $sim 10^{-2}$ $M_{odot}$ of helium has been accreted, the ram pressure of the hot helium torus can deflect the accretion stream such that the stream no longer directly impacts the surface. The velocity difference between the stream and the torus produces shearing which seeds large-scale Kelvin-Helmholtz instabilities along the interface between the two regions. These instabilities eventually grow into dense knots of material that periodically strike the surface of the primary, adiabatically compressing the underlying helium torus. If the temperature of the compressed material is raised above a critical temperature, the timescale for triple-$alpha$ reactions becomes comparable to the dynamical timescale, leading to the detonation of the primarys helium envelope. This detonation drives shockwaves into the primary which tend to concentrate at one or more focal points within the primarys CO core. If a relatively small amount of mass is raised above a critical temperature and density at these focal points, the CO core may itself be detonated.
Black hole binary transients undergo dramatic evolution in their X-ray timing and spectral behaviour during outbursts. In recent years a paradigm has arisen in which soft X-ray states are associated with an inner disc radius at, or very close to, the innermost stable circular orbit (ISCO) around the black hole, while in hard X-ray states the inner edge of the disc is further from the black hole. Models of advective flows suggest that as the X-ray luminosity drops in hard states, the inner disc progressively recedes, from a few to hundreds gravitational radii. Recent observations which show broad iron line detections and estimates of the disc component strength suggest that a non-recessed disc could still be present in bright hard states. In this study we present a comprehensive analysis of the spectral components associated with the inner disc, utilising data from instruments with sensitive low-energy responses and including reanalyses of previously published results. A key component of the study is to fully estimate systematic uncertainties by e.g. investigating in detail the effect of having a hydrogen column density that is fixed or free to vary. We conclude that for L_x > 0.01 of the Eddington limit, spectral fits allow us to constrain the disc to be < 10R_g. There is, however, clear evidence that when L_x is between 10^-2-- 10^-3 Eddington, the disc does begin to recede. We include measurements of disc radii in two quiescent black hole binaries, and present the inferred evolution of accretion parameters in the entire range of bolometric luminosities 10^-8 -- 1 Eddington. We compare our results with theoretical models and note that the implied rate of disc recession with luminosity is consistent with recent empirical results on the X-ray timing behaviour of black holes of all masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا