Do you want to publish a course? Click here

MASTER optical polarization variability detection in the Microquasar V404 Cyg/GS2023+33

64   0   0.0 ( 0 )
 Added by Gorbovskoy Evgeny
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

On 2015 June 15 the Swift space observatory discovered that the Galactic black hole candidate V404 Cyg was undergoing another active X-ray phase, after 25 years of inactivity (Barthelmy et al. 2015). Twelve telescopes of the MASTER Global Robotic Net located at six sites across four continents were the first ground based observatories to start optical monitoring of the microquasar after its gamma-ray wakeup at 18h 34m 09s U.T. on 2015 June 15 (Lipunov et al. 2015). In this paper we report, for the first time, the discovery of variable optical linear polarization, changing by 4-6% over a timescale of approximately 1 h, on two different epochs. We can conclude that the additional variable polarization arisies from the relativistic jet generated by the black hole in V404Cyg. The polarization variability correlates with optical brightness changes, increasing when the flux decreases.



rate research

Read More

We report simultaneous X-ray and optical observations of V404 Cyg in quiescence. The X-ray flux varied dramatically by a factor of >20 during a 60ks observation. X-ray variations were well correlated with those in Halpha, although the latter include an approximately constant component as well. Correlations can also be seen with the optical continuum, although these are less clear. We see no large lag between X-ray and optical line variations; this implies they are causally connected on short timescales. As in previous observations, Halpha flares exhibit a double-peaked profile suggesting emission distributed across the accretion disk. The peak separation is consistent with material extending outwards to at least the circularization radius. The prompt response in the entire Halpha line confirms that the variability is powered by X-ray (and/or EUV) irradiation.
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations during the brightest epoch of the outburst, along with complementary NuSTAR, AAVSO, and VSNET data, to examine the timing relationship between the simultaneous optical and X-ray light curves, in order to understand the emission mechanisms and physical locations. We have identified all optical flares which have simultaneous X-ray observations, and performed cross-correlation analysis to estimate the time delays between the optical and soft and hard X-ray emission. We have also compared the evolution of the optical and X-ray emission with the hardness-ratios. We have identified several types of behaviour during the outburst. On many occasions, the optical flares occur simultaneously with X-ray flares, but at other times positive and negative time delays between the optical and X-ray emission are measured. We conclude that the observed optical variability is driven by different physical mechanisms, including reprocessing of X-rays in the accretion disc and/or the companion star, interaction of the jet ejections with surrounding material or with previously ejected blobs, and synchrotron emission from the jet.
56 - C. Zurita 2004
We present the results of optical and infrared photometry of the quiescent X-ray transient V404 Cyg during the period 1992-2003. The ellipsoidal modulations extracted from the most complete databases (years 1992, 1998 and 2001) show unequal maxima and minima with relative strength varying from year to year although their peak to peak amplitudes remain roughly constant at 0.24+-0.01 magnitudes. Fast optical variations superimposed on the secondary stars double-humped ellipsoidal modulation were detected every year with a mean amplitude of ~0.07 mags. We have not found significant changes in the activity during this decade which indicates that this variability is probably not connected to the 1989 outburst. We have found periodicities in the 1998 and 2001 data near the 6 hr quasi-periodicity observed in 1992, although we interpret it as consequence of the appearance of a flare event almost every night. Significant variability is also present in the I and near infrared (J and K_short) bands and this decreases slightly or remains approximately constant at longer wavelengths. A cross correlation analysis shows that both the R and I emission are simultaneous down to 40 s.
229 - T. Shahbaz 2016
We present optical and near-IR linear polarimetry of V404 Cyg during its 2015 outburst and in quiescence. We obtained time resolved r-band polarimetry when the source was in outburst, near-IR polarimetry when the source was near quiescence and multiple wave-band optical polarimetry later in quiescence. The optical to near-IR linear polarization spectrum can be described by interstellar dust and an intrinsic variable component. The intrinsic optical polarization, detected during the rise of one of the brightest flares of the outburst, is variable, peaking at 4.5 per cent and decaying to 3.5 per cent. We present several arguments that favour a synchrotron jet origin to this variable polarization, with the optical emission originating close to the jet base. The polarization flare occurs during the initial rise of a major radio flare event that peaks later, and is consistent with a classically evolving synchrotron flare from an ejection event. We conclude that the optical polarization flare represents a jet launching event; the birth of a major ejection. For this event we measure a rather stable polarization position angle of -9 degrees E of N, implying that the magnetic field near the base of the jet is approximately perpendicular to the jet axis. This may be due to the compression of magnetic field lines in shocks in the accelerated plasma, resulting in a partially ordered transverse field that have now been seen during the 2015 outburst. We also find that this ejection occurred at a similar stage in the repetitive cycles of flares.
108 - R.I. Hynes 2009
We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, UV, and X-ray coverage is simultaneous. We supplement the SED with additional non-simultaneous data in the optical through infrared where necessary. The compiled SED is the most complete available for this, the X-ray and radio brightest quiescent black hole system. We find no need for a substantial contribution from accretion light from the near-UV to the near-IR, and in particular the weak UV emission constrains published spectral models for V404 Cyg. We confirm that no plausible companion spectrum and interstellar extinction can fully explain the mid-IR, however, and an IR excess from a jet or cool disc appears to be required. The X-ray spectrum is consistent with a Gamma~2 power-law as found by all other studies to date. There is no evidence for any variation in the hardness over a range of a factor of 10 in luminosity. The radio flux is consistent with a flat spectrum (in f(nu)). The break frequency between a flat and optically thin spectrum most likely occurs in the mid or far-IR, but is not strongly constrained by these data. We find the radio to be substantially variable but with no clear correlation with X-ray variability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا