The degree of the Gauss map of the theta divisor


Abstract in English

We study the degree of the Gauss map of the theta divisor of principally polarised complex abelian varieties. We use this to obtain a bound on the multiplicity of the theta divisor along irreducible components of its singular locus, and apply this bound in examples, and to understand the local structure of isolated singular points. We further define a stratification of the moduli space of ppavs by the degree of the Gauss map. In dimension four, we show that this stratification gives a weak solution of the Schottky problem, and we conjecture that this is true in any dimension.

Download