A Microscopic Field Theory for the Universal Shift of Sound Velocity and Dielectric Constant in Low-Temperature Glasses


Abstract in English

In low-temperature glasses, the sound velocity changes as the logarithmic function of temperature below $10$K: $[c(T) - c(T_0)]/c(T_0) = mathcal{C}ln(T/T_0)$. With increasing temperature starting from $T=0$K, the sound velocity does not increase monotonically, but reaches a maximum at a few Kelvin and decreases at higher temperatures. Tunneling-two-level-system (TTLS) model explained the $ln T$ dependence of sound velocity shift. In TTLS model the slope ratio of $ln T$ dependence of sound velocity shift between lower temperature increasing regime (resonance regime) and higher temperature decreasing regime (relaxation regime) is $mathcal{C}^{rm res }:mathcal{C}^{rm rel }=1:-frac{1}{2}$. In this paper we develop the generic coupled block model to prove the slope ratio of sound velocity shift between two regimes is $mathcal{C}^{rm res }:mathcal{C}^{rm rel }=1:-1$ rather than $1:-frac{1}{2}$, which agrees with the majority of the measurements. The dielectric constant shift in low-temperature glasses, $[epsilon_r(T)-epsilon_r(T_0)]/epsilon_r(T_0)$, has a similar logarithmic temperature dependence below $10$K: $[epsilon(T)-epsilon(T_0)]/epsilon(T_0) = mathcal{C}ln(T/T_0)$. In TTLS model the slope ratio of dielectric constant shift between resonance and relaxation regimes is $mathcal{C}^{rm res}:mathcal{C}^{rm rel}=-1:frac{1}{2}$. In this paper we apply the electric dipole-dipole interaction, to prove that the slope ratio between two regimes is $mathcal{C}^{rm res}:mathcal{C}^{rm rel} = -1:1$ rather than $-1:frac{1}{2}$. Our result agrees with the dielectric constant measurements. By developing a real space renormalization technique for glass non-elastic and dielectric susceptibilities, we show that these universal properties essentially come from the $1/r^3$ long range interactions, independent of the materials microscopic properties.

Download