In this paper we derive the tree-level S-matrix of the effective theory of Goldstone bosons known as the non-linear sigma model (NLSM) from string theory. This novel connection relies on a recent realization of tree-level open-superstring S-matrix predictions as a double copy of super-Yang-Mills theory with Z-theory --- the collection of putative scalar effective field theories encoding all the alpha-dependence of the open superstring. Here we identify the color-ordered amplitudes of the NLSM as the low-energy limit of abelian Z-theory. This realization also provides natural higher-derivative corrections to the NLSM amplitudes arising from higher powers of alpha in the abelian Z-theory amplitudes, and through double copy also to Born-Infeld and Volkov-Akulov theories. The Kleiss-Kuijf and Bern-Carrasco-Johansson relations obeyed by Z-theory amplitudes thereby apply to all alpha-corrections of the NLSM. As such we naturally obtain a cubic-graph parameterization for the abelian Z-theory predictions whose kinematic numerators obey the duality between color and kinematics to all orders in alpha.
We continue our investigation of Z-theory, the second double-copy component of open-string tree-level interactions besides super-Yang-Mills (sYM). We show that the amplitudes of the extended non-linear sigma model (NLSM) recently considered by Cachazo, Cha, and Mizera are reproduced by the leading alpha-order of Z-theory amplitudes in the semi-abelian case. The extension refers to a coupling of NLSM pions to bi-adjoint scalars, and the semi-abelian case involves to a partial symmetrization over one of the color orderings that characterize the Z-theory amplitudes. Alternatively, the partial symmetrization corresponds to a mixed interaction among abelian and non-abelian states in the underlying open-superstring amplitude. We simplify these permutation sums via monodromy relations which greatly increase the efficiency in extracting the alpha-expansion of these amplitudes. Their alpha-corrections encode higher-derivative interactions between NLSM pions and bi-colored scalars all of which obey the duality between color and kinematics. Through double-copy, these results can be used to generate the predictions of supersymmetric Dirac-Born-Infeld-Volkov-Akulov theory coupled with sYM as well as a complete tower of higher-order alpha-corrections.
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on AdS$_5times$S$^5$. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop-amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in $alpha$ not considered before.
Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelbergs generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality.
We explore and exploit the relation between non-planar correlators in ${cal N}=4$ super-Yang-Mills, and higher-genus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genus-one, four-point string amplitude in AdS$_5times S^5$ in the low-energy expansion, dual to an ${cal N}=4$ super-Yang-Mills correlator in the t Hooft limit at order $1/c^2$ in a strong coupling expansion. In the flat space limit, this maps onto the genus-one, four-point scattering amplitude for type II closed strings in ten dimensions. Using this approach we reproduce several results obtained via string perturbation theory. We also demonstrate a novel mechanism to fix subleading terms in the flat space limit of AdS amplitudes by using string/M-theory.
We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be useful in practical perturbative computations as an expansion around some background. The new Moyal basis is called the $sigma $-basis, where $sigma$ is the worldsheet parameter of an open string. A vital part of the new star product is a natural and crucially needed mid-point regulator in this continuous basis, so that all computations are finite. The regulator is removed after renormalization and then the theory is finite only in the critical dimension. Boundary conditions for D-branes at the endpoints of the string are naturally introduced and made part of the theory as simple rules in algebraic computations. A byproduct of our approach is an astonishing suggestion of the formalism: the roots of ordinary quantum mechanics may originate in the rules of non-commutative interactions in string theory.
John Joseph M. Carrasco
,Carlos R. Mafra
,Oliver Schlotterer
.
(2016)
.
"Abelian Z-theory: NLSM amplitudes and alpha-corrections from the open string"
.
Oliver Schlotterer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا