No Arabic abstract
We report measurements of the infrared optical response of thin black phosphorus under field-effect modulation. We interpret the observed spectral changes as a combination of an ambipolar Burstein-Moss (BM) shift of the absorption edge due to band-filling under gate control, and a quantum confined Franz-Keldysh (QCFK) effect, phenomena which have been proposed theoretically to occur for black phosphorus under an applied electric field. Distinct optical responses are observed depending on the flake thickness and starting carrier concentration. Transmission extinction modulation amplitudes of more than two percent are observed, suggesting the potential for use of black phosphorus as an active material in mid-infrared optoelectronic modulator applications.
The advent of black phosphorus field-effect transistors (FETs) has brought new possibilities in the study of two-dimensional (2D) electron systems. In a black phosphorus FET, the gate induces highly anisotropic 2D electron and hole gases. Although the 2D hole gas in black phosphorus has reached high carrier mobilities that led to the observation of the integer quantum Hall effect, the improvement in the sample quality of the 2D electron gas (2DEG) has however been only moderate; quantum Hall effect remained elusive. Here, we obtain high quality black phosphorus 2DEG by defining the 2DEG region with a prepatterned graphite local gate. The graphite local gate screens the impurity potential in the 2DEG. More importantly, it electrostatically defines the edge of the 2DEG, which facilitates the formation of well-defined edge channels in the quantum Hall regime. The improvements enable us to observe precisely quantized Hall plateaus in electron-doped black phosphorus FET. Magneto-transport measurements under high magnetic fields further revealed a large effective mass and an enhanced Lande g-factor, which points to strong electron-electron interaction in black phosphorus 2DEG. Such strong interaction may lead to exotic many-body quantum states in the fractional quantum Hall regime.
Achieving good quality Ohmic contacts to van der Waals materials is a challenge, since at the interface between metal and van der Waals material, different conditions can occur, ranging from the presence of a large energy barrier between the two materials to the metallization of the layered material below the contacts. In black phosphorus (bP), a further challenge is its high reactivity to oxygen and moisture, since the presence of uncontrolled oxidation can substantially change the behavior of the contacts. In this study, we investigate the influence of the metal used for the contacts to bP against the variability between different flakes and different samples, using three of the most used metals as contacts: Chromium, Titanium, and Nickel. Using the transfer length method, from an analysis of ten devices, both at room temperature and at low temperature, Ni results to be the best metal for Ohmic contacts to bP, providing the lowest contact resistance and minimum scattering between different devices. Moreover, we investigate the gate dependence of the current-voltage characteristics of these devices. In the accumulation regime, we observe good linearity for all metals investigated.
Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional which-layer degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton condensation. Here we demonstrate facile formation of wide QWs in few-layer black phosphorus devices that host double layers of charge carriers. In contrast to tradition QWs, each 2D layer is ambipolar, and can be tuned into n-doped, p-doped or intrinsic regimes. Fully spin-polarized quantum Hall states are observed on each layer, with enhanced Lande g-factor that is attributed to exchange interactions. Our work opens the door for using 2D semiconductors as ambipolar single, double or wide QWs with unusual properties such as high anisotropy.
As a high mobility two-dimensional semiconductor with strong structural and electronic anisotropy, atomically thin black phosphorus (BP) provides a new playground for investigating the quantum Hall (QH) effect, including outstanding questions such as the functional dependence of Landau level (LL) gaps on magnetic field B, and possible anisotropic fractional QH states. Using encapsulating few-layer BP transistors with mobility up to 55,000 cm2/Vs, we extract LL gaps over an exceptionally wide range of B for QH states at filling factors { u}=-1 to -4, which are determined to be linear in B, thus resolving a controversy raised by its anisotropy. Furthermore, a fractional QH state at { u}~ -4/3 and an additional feature at -0.56+/- 0.1 are observed, underscoring BP as a tunable 2D platform for exploring electron interactions.
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2/Vs in ambient conditions, which we attribute to the low defect density of the bP/POx interface.