Phase-field modeling of isothermal quasi-incompressible multicomponent liquids


Abstract in English

In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental {equations of continuum mechanics}, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. {Next the general definition of incompressibility is given}, which is taken into account {in the derivation} by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional), {and (ii) can} influence non-equilibrium pattern formation significantly.

Download