Do you want to publish a course? Click here

Simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 using four-wave mixing spectroscopy

91   0   0.0 ( 0 )
 Added by Kimberley Hall
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solar cells incorporating organic-inorganic perovskite, which may be fabricated using low-cost solution-based processing, have witnessed a dramatic rise in efficiencies yet their fundamental photophysical properties are not well understood. The exciton binding energy, central to the charge collection process, has been the subject of considerable controversy due to subtleties in extracting it from conventional linear spectroscopy techniques due to strong broadening tied to disorder. Here we report the simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 films using four-wave mixing (FWM) spectroscopy. Due to the high sensitivity of FWM to excitons, tied to their longer coherence decay times than unbound electron-hole pairs, we show that the exciton resonance energies can be directly observed from the nonlinear optical spectra. Our results indicate low-temperature binding energies of 13 meV (29 meV) for the free (defect-bound) exciton, with the 16 meV localization energy for excitons attributed to binding to point defects. Our findings shed light on the wide range of binding energies (2-55 meV) reported in recent years.



rate research

Read More

258 - D. Webber , C. Clegg , A. W. Mason 2017
We report the application of femtosecond four-wave mixing (FWM) to the study of carrier transport in solution-processed CH3NH3PbI3. The diffusion coefficient was extracted through direct detection of the lateral diffusion of carriers utilizing the transient grating technique, coupled with simultaneous measurement of decay kinetics exploiting the versatility of the boxcar excitation beam geometry. The observation of exponential decay of the transient grating versus interpulse delay indicates diffusive transport with negligible trapping within the first nanosecond following excitation. The in-plane transport geometry in our experiments enabled the diffusion length to be compared directly with the grain size, indicating that carriers move across multiple grain boundaries prior to recombination. Our experiments illustrate the broad utility of FWM spectroscopy for rapid characterization of macroscopic film transport properties.
We study photoluminescence (PL) spectra and exciton dynamics of MoS$_2$ monolayer (ML) grown by the chemical vapor deposition technique. In addition to the usual direct A-exciton line we observe a low-energy line of bound excitons dominating the PL spectra at low temperatures. This line shows unusually strong redshift with increase in the temperature and submicrosecond time dynamics suggesting indirect nature of the corresponding transition. By monitoring temporal dynamics of exciton PL distribution in the ML plane we observe diffusive transport of A-excitons and measure the diffusion coefficient up to $40$~cm$^2$/s at elevated excitation powers. The bound exciton spatial distribution spreads over tens of microns in $sim 1$ $mu$s. However this spread is subdiffusive, characterized by a significant slowing down with time. The experimental findings are interpreted as a result of the interplay between the diffusion and Auger recombination of excitons.
Non-perturbative phenomena in four-wave mixing spectra of semiconductors are studied using the exact solution of a widely used phenomenological non-linear equation of motion of the exciton polarization. It is shown that Coulomb interaction, included in the nonlinearity, leads to two characteristic effects, which are essentially of dynamical origin, -- a split of the exciton peak and a non-monotonous dependence of the response at the exciton frequency on the magnitude of the external field. Relations between the spectral features and the parameters of the system is obtained. It is found that the transition from perturbative to non-perturbative regimes is controlled by parameters inversely proportional to the decay rate. It implies that the condition of low excitation density does not necessarily warrant applicability of the perturbational approach.
71 - Kyrylo Greben 2019
We investigate an excitonic peak appearing in low-temperature photoluminescence of monolayer transition metal dichalcogenides (TMDCs), which is commonly associated with defects and disorder. First, to uncover the intrinsic origin of defect-related excitons, we study their dependence on gate voltage, excitation power, and temperature in a prototypical TMDC monolayer, $MoS_2$. We show that the entire range of behaviors of defect-related excitons can be understood in terms of a simple model, where neutral excitons are bound to ionized donor levels, likely related to sulphur vacancies, with a density of $7cdot10^{11} cm^{-2}$. Second, to study the extrinsic origin of defect-related excitons, we controllably deposit oxygen molecules in-situ onto the surface of $MoS_2$ kept at cryogenic temperature. We find that in addition to trivial p-doping of $3cdot10^{12} cm^{-2}$, oxygen affects the formation of defect-related excitons by functionalizing the vacancy. Combined, our results uncover the origin of defect-related excitons, suggest a simple and conclusive approach to track the functionalization of TMDCs, benchmark device quality, and pave the way towards exciton engineering in hybrid organic-inorganic TMDC devices.
Coalescence overgrowth of pattern-grown GaN nanocolumns (NC) on c-plane sapphire substrate with metal organic chemical vapour deposition is demonstrated. The subsequent coalescence overgrowth opens a possibility for dislocation reduction due to the lateral strain relaxation in columnar geometry. We present further growth optimization and innovative characterization of MOCVD layers, overgrown on the columnar structure with varying diameter of colums. Nanoimprint lithography was applied to open circular holes of 250, 300, 450, 600 nm in diameter on the SiO2 layer, deposited on the GaN layer on c-plane sapphire template.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا