The InfraRed Imaging Spectrograph (IRIS) will be a first-light client instrument for the Narrow Field Infrared Adaptive Optics System (NFIRAOS) on the Thirty Meter Telescope. IRIS includes three configurable tip/tilt (TT) or tip/tilt/focus (TTF) On-Instrument Wavefront Sensors (OIWFS). These sensors are positioned over natural guide star (NGS) asterisms using movable polar-coordinate pick-off arms (POA) that patrol an approximately 2-arcminute circular field-of-view (FOV). The POAs are capable of colliding with one another, so an algorithm for coordinated motion that avoids contact is required. We have adopted an approach in which arm motion is evaluated using the gradient descent of a scalar potential field that includes an attractive component towards the goal configuration (locations of target stars), and repulsive components to avoid obstacles (proximity to adjacent arms). The resulting vector field is further modified by adding a component transverse to the repulsive gradient to avoid problematic local minima in the potential. We present path planning simulations using this computationally inexpensive technique, which exhibit smooth and efficient trajectories.