We address the origin of Ultra-Diffuse Galaxies (UDGs), which have stellar masses typical of dwarf galaxies but effective radii of Milky Way-sized objects. Their formation mechanism, and whether they are failed $rm L_{star}$ galaxies or diffuse dwarfs, are challenging issues. Using zoom-in cosmological simulations from the NIHAO project, we show that UDG analogues form naturally in medium-mass haloes due to episodes of gas outflows associated with star formation. The simulated UDGs live in isolated haloes of masses $10^{10-11}rm M_{odot}$, have stellar masses of $10^{7-8.5}rm M_{odot}$, effective radii larger than 1 kpc and dark matter cores. They show a broad range of colors, an average Sersic index of 0.83, a typical distribution of halo spin and concentration, and a non-negligible HI gas mass of $10^{7-9}rm M_{odot}$, which correlates with the extent of the galaxy. Gas availability is crucial to the internal processes that form UDGs: feedback driven gas outflows, and subsequent dark matter and stellar expansion, are the key to reproduce faint, yet unusually extended, galaxies. This scenario implies that UDGs represent a dwarf population of low surface brightness galaxies and should exist in the field. The largest isolated UDGs should contain more HI gas than less extended dwarfs of similar $rm M_{star}$.