Do you want to publish a course? Click here

A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

101   0   0.0 ( 0 )
 Added by Estelle Pons
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.



rate research

Read More

Using the 3XMM catalogue of serendipitous X-ray sources, and the SDSS-DR9 spectroscopic catalogue, we have obtained a new sample of X-ray selected narrow emission line galaxies. The standard optical diagnostic diagram and selection by hard X-ray luminosity expose a mismatch between the optically-based and X-ray-based classifications. The nature of these misclassified elusive AGN can be understood in terms of their broader X-ray and optical properties and leads to a division of this sub-sample into two groups. A little more than half are likely to be narrow-line Seyfert 1s (NLS1s), so misclassified because of the contribution of the Broad Line Region (BLR) to their optical spectra. The remainder have some of the properties of Seyfert 2 (Sy2) AGN; their optical elusiveness can be explained by optical dilution from the host galaxy plus a star-formation contribution and by their underluminous optical emission due to low accretion rates. Because some of the Sy2 sources have very low accretion rates, are unabsorbed, plus the fact that they lack broad optical emission lines, they are good candidates to be True Sy2 AGN.
88 - L. C. Gallo 2018
It is arguably in the X-ray regime that Narrow-line Seyfert 1 galaxies (NLS1s) exhibit the most extreme behaviour. Spectral complexity, rapid and large amplitude flux variations, and exceptional spectral variability are well known characteristics. However, NLS1s are not eccentric, but form a continuous sequence with typical Seyfert 1 galaxies. Understanding the extreme behaviour displayed by NLS1s will provide insight to the general AGN phenomenon. In this review, I will examine some of the important NLS1 X-ray discoveries over the past twenty years. I will then explore recent work that looks at the nature of the primary X-ray source (i.e. the corona) in NLS1s, demonstrating how the corona can be compact, dynamic, and in some cases consistent with collimated outflow. X-ray observations of NLS1s will be key in determining the nature of the corona, resolving the disc-jet connection, and determining the origin of the radio loud/quiet dichotomy in AGN.
98 - N. Chang , F. G. Xie , X. Liu 2021
Because the disc--jet coupling likely depends on various properties of sources probed, the sample control is always an important but challenging task. In this work, we re-analyzed the INTEGRAL hard X-ray-selected sample of Seyfert galaxies. We only consider sources that have measurements in black hole mass, and luminosities in radio and X-rays. Our sample includes 64 sources, consists of both bright AGNs and low-luminosity ones. We first find that, because of the similarity in the $L_{HX}/L_X$ distribution, the X-ray origin of radio-loud Seyferts may be the same to that of radio-quiet ones, where we attribute to the hot accretion flow (or similarly, the corona). We then investigate the connections between luminosities in radio and X-rays. Since our sample suffers a selection bias of a black hole mass $M_{BH}$ dependence on $L_X/L_{Edd}$, we focus on the correlation slope $xi_X$ between the radio (at 1.4 GHz) and X-ray luminosities in Eddington unit, i.e. $(L_R/L_{Edd})propto(L_X/L_{Edd})^{xi_X}$. We classify the sources according to various properties, i.e. 1) Seyfert classification, 2) radio loudness, and 3) radio morphology. We find that, despite these differences in classification, all the sources in our sample are consistent with a universal correlation slope $xi_X$, with $xi_X=0.77pm0.10$. This is unexpected, considering various possible radio emitters in radio-quiet systems. For the jet interpretation, our result may suggest a common/universal but to be identified jet launching mechanism among all the Seyfert galaxies, while properties like black hole spin and magnetic field strength only play secondary roles. We further estimate the jet production efficiency $eta_{jet}$ of Seyfert galaxies, which is $eta_{jet}approx1.9^{+0.9}_{-1.5}times10^{-4}$ on average. We also find that $eta_{jet}$ increases as the system goes fainter.
We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systematic monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, implying a mildly relativistic jet. The computed jet powers show very energetic flows. The radio polarisation in one case clearly implies a quiescent jet underlying the recursive flaring activity. Despite the generally lower flux densities, the sources appear to show all typical characteristics seen in blazars that are powered by relativistic jets.
This article reviews our current understanding about $gamma$-ray detected narrow-line Seyfert 1 ($gamma$-NLSy1) galaxies. The detection with the Large Area Telescope onboard {it Fermi}~Gamma-ray Space Telescope has provided the strongest evidence for the presence of closely aligned relativistic jet in these intriguing active galactic nuclei (AGN) and opened up a realm to explore the physical conditions needed to launch the jet in a different central engine and host galaxy environment than that is known for blazars. Promising results acquired from various multi-wavelength campaigns are converging to a scenario in which the $gamma$-NLSy1 galaxies can be considered as `young blazars. These enigmatic sources hold the key to unravel the jet triggering mechanism and evolution of the AGN phase of a galaxy, in general. As such, $gamma$-NLSy1s should be considered as one of the top priority targets for next generation observational facilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا