Do you want to publish a course? Click here

The photometric investigation of the newly discovered W UMa type binary system GSC 03122-02426

56   0   0.0 ( 0 )
 Added by Xiao Zhou
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The $B$ $V$ $R_c$ $I_c$ bands light curves of the newly discovered binary system astrobj{GSC 03122-02426} are obtained and analyzed using the Wilson-Devinney (W-D) code. The solutions suggest that the mass ratio of the binary system is $q = 2.70$ and the less massive component is $422K$ hotter than the more massive one. We conclude that astrobj{GSC 03122-02426} is a W-subtype shallow contact (with a contact degree of $f = 15.3,%$) binary system. It may be a newly formed contact binary system which is just under geometrical contact and will evolve to be a thermal contact binary system. The high orbital inclination ($i = 81.6^{circ}$) implies that astrobj{GSC 03122-02426} is a total eclipsing binary system and the photometric parameters obtained by us are quite reliable. We also estimate the absolute physical parameters of the two components in astrobj{GSC 03122-02426}, which will provide fundamental information for the research of contact binary systems. The formation and evolutionary scenario of astrobj{GSC 03122-02426} is discussed.



rate research

Read More

The first four-color light curves of V868 Mon in the $B$ $V$ $R_c$ and $I_c$ bands are presented and analyzed by using the Wilson-Devinney method of the 2013 version. It is discovered that V868 Mon is an A-subtype contact binary (f=$58.9,%$) with a large temperature difference of 916$K$ between the two components. Using the eight new times of light minimum determined by the authors together with those collected from literatures, the authors found that the general trend of the observed-calculate ($O$-$C$) curve shows a upward parabolic variation that corresponds to a long-term increase in the orbital period at a rate of $dP/dt=9.38times{10^{-7}}daycdot year^{-1}$. The continuous increase may be caused by a mass transfer from the less massive component to the more massive one.
The recently discovered eclipsing binary system TYC 2675-663-1 is a X-ray source, and shows properties in the optical that are similar to the W UMa systems, but are somewhat unusual compared to what is seen in other contact binary systems. The goal of this work is to characterize its properties and investigate its nature by means of detailed photometric and spectroscopic observations. We have performed extensive V-band photometric measurements with the INTEGRAL satellite along with ground-based multi-band photometric observations, as well as high-resolution spectroscopic monitoring from which we have measured the radial velocities of the components. These data have been analysed to determine the stellar properties, including the absolute masses and radii. Additional low-resolution spectroscopy was obtained to investigate spectral features. From the measured eclipse timings we determine an orbital period for the binary of P=0.4223576+-0.0000009 days. The light-curve and spectroscopic analyses reveal the observations to be well represented by a model of an overcontact system composed of main-sequence F5 and G7 stars (temperature difference of nearly 1000 K), with the possible presence of a third star. Low-resolution optical spectroscopy reveals a complex H alpha emission, and other features that are not yet understood. The unusually large mass ratio of q=0.81+-0.05 places it in the rare H (high mass ratio) subclass of the W UMa systems, which are presumably on their way to coalescence.
The CCD photometric data of the EW-type binary, II CMa, which is a contact star in the field of the middle-aged open cluster Berkeley 33, are presented. The complete R light curve was obtained. In the present paper, using the five CCD epochs of light minimum (three of them are calculated from Mazur et al. (1993)s data and two from our new data), the orbital period P was revised to 0.22919704 days. The complete R light curve was analyzed by using the 2003 version of W-D (Wilson-Devinney) program. It is found that this is a contact system with a mass ratio $q=0.9$ and a contact factor $f=4.1%$. The high mass ratio ($q=0.9$) and the low contact factor ($f=4.1%$) indicate that the system just evolved into the marginal contact stage.
Multi-color light curves of V1197 Her were obtained with the 2.4 meter optical telescope at Thai National Observatory and the Wilson-Devinney (W-D) program is used to model the observational light curves. The photometric solutions reveal that V1197 Her is a W-subtype shallow contact binary system with a mass ratio of $q = 2.61 $ and fill-out factor to be $f = 15.7,%$. The temperature difference between the primary star and secondary star is only $140K$ in spite of the low degree of contact, which means that V1197 Her is not only in geometrical contact configuration but also already under thermal contact status. The orbital inclination of V1197 Her is as high as $i = 82.7^{circ}$, and the primary star is completely eclipsed at the primary minimum. The totally eclipsing characteristic implies that the determined physical parameters are highly reliable. The masses, radii and luminosities of the primary star (star 1) and secondary star (star 2) are estimated to be $M_{1} = 0.30(1)M_odot$, $M_{2} = 0.77(2)M_odot$, $R_{1} = 0.54(1)R_odot$, $R_{2} = 0.83(1)R_odot$, $L_{1} = 0.18(1)L_odot$ and $L_{2} = 0.38(1)L_odot$. The evolutionary status of the two component stars are drawn in the H - R diagram, which shows that the less massive but hotter primary star is more evolved than the secondary star. The period of V1197 Her is decreasing continuously at a rate of $dP/dt=-2.58times{10^{-7}}daycdot year^{-1}$, which can be explained by mass transfer from the more massive star to the less massive one with a rate of $frac{dM_{2}}{dt}=- 1.61times{10^{-7}}M_odot/year$. The light curves of V1197 Her is reported to have the OConnell effect. Thus, a cool spot is added to the massive star to model the asymmetry on light curves.
60 - D. R. S. Boyd 2016
Using multicolour photometry we have confirmed the binary nature of the new W-type W UMa eclipsing binary VSX J053024.8+842243 and established its primary eclipse ephemeris to be HJD = 2455924.38150(26) + 0.4322929(1) * E. Using the light curve modelling code PHOEBE and published data on the evolution of W-type contact binaries we found the primary and secondary components to have masses 0.50 Msun and 1.44 Msun, radii 0.87 Rsun and 1.42 Rsun, luminosities 0.98 Lsun and 1.91 Lsun, temperatures 6145 K and 5702 K and binary orbit inclination 59.4{deg}. We found the distance to the binary to be 511 parsec, its E(B-V) colour excess 0.04 and its intrinsic (B-V) colour index 0.62. A low resolution spectrum corrected for interstellar reddening confirmed its spectral type as G2V.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا