Context: For over 12 yr, we have carried out a precise radial velocity survey of a sample of 373 G and K giant stars using the Hamilton Echelle Spectrograph at Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims: We aim at detecting and characterizing substellar+stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods: We obtained high precision radial velocity (RV) measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. In order to discriminate between RV variations due to non-radial pulsation or stellar spots we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to further characterize the system, we obtain high-resolution images with LMIRCam at the Large Binocular Telescope. Results: We report the likely discovery of a giant planet with a mass of $m_{p}~sin i=6.92_{-0.24}^{+0.18}~M_{Jup}$ orbiting at $a_{p}=1.0860_{-0.0007}^{+0.0006}$ au from the giant star HD 59686 A. Besides the planetary signal, we discover an eccentric ($e_{B}=0.729_{-0.003}^{+0.004}$) binary companion with a mass of $m_{B}~sin i=0.5296_{-0.0008}^{+0.0011}~M_{Sun}$ orbiting at a semi-major axis of just $a_{B}=13.56_{-0.14}^{+0.18}$ au. Conclusions: The existence of the planet HD 59686 Ab in a tight eccentric binary system severely challenges standard giant planet formation theories and requires substantial improvements to such theories in tight binaries. Otherwise, alternative planet formation scenarios such as second generation planets or dynamical interactions in an early phase of the systems lifetime should be seriously considered in order to better understand the origin of this enigmatic planet.