Do you want to publish a course? Click here

A path towards understanding the rotation-activity relation of M dwarfs with K2 mission, X-ray and UV data

94   0   0.0 ( 0 )
 Added by Beate Stelzer
 Publication date 2016
  fields Physics
and research's language is English
 Authors B.Stelzer




Ask ChatGPT about the research

We study the relation between stellar rotation and magnetic activity for a sample of 134 bright, nearby M dwarfs observed in the Kepler Two-Wheel (K2) mission during campaigns C0 to C4. The K2 lightcurves yield photometrically derived rotation periods for 97 stars (79 of which without previous period measurement), as well as various measures for activity related to cool spots and flares. We find a clear difference between fast and slow rotators with a dividing line at a period of ~10d at which the activity level changes abruptly. All photometric diagnostics of activity (spot cycle amplitude, flare peak amplitude and residual variability after subtraction of spot and flare variations) display the same dichotomy, pointing to a quick transition between a high-activity mode for fast rotators and a low-activity mode for slow rotators. This unexplained behavior is reminiscent of a dynamo mode-change seen in numerical simulations that separates a dipolar from a multipolar regime. A substantial number of the fast rotators are visual binaries. A tentative explanation is accelerated disk evolution in binaries leading to higher initial rotation rates on the main-sequence and associated longer spin-down and activity lifetimes. We combine the K2 rotation periods with archival X-ray and UV data. X-ray, FUV and NUV detections are found for 26, 41, and 11 stars from our sample, respectively. Separating the fast from the slow rotators, we determine for the first time the X-ray saturation level separately for early- and for mid-M stars.



rate research

Read More

96 - St. Raetz , B. Stelzer , 2020
Studies of the rotation-activity relation of late-type stars are essential to enhance our understanding of stellar dynamos and angular momentum evolution. We study the rotation-activity relation with K2 for M dwarfs where it is especially poorly understood. We analyzed the light curves of all bright and nearby M dwarfs form the Superblink proper motion catalog that were in the K2 field of view. For a sample of 430 M dwarfs observed in campaigns C0-C19 in long cadence mode we determined the rotation period and a wealth of activity diagnostics. Our study of the rotation-activity relation based on photometric activity indicators confirmed the previously published abrupt change of the activity level at a rotation period of ~10d. Our more than three times larger sample increases the statistical significance of this finding.
Using light curves obtained by the K2 mission, we study the relation between stellar rotation and magnetic activity with special focus on stellar flares. Our sample comprises 56 bright and nearby M dwarfs observed by K2 during campaigns C0-C18 in long- and short-cadence mode. We derive rotation periods for 46 M dwarfs and measure photometric activity indicators such as amplitude of the rotational signal, standard deviation of the light curves, and the basic flare properties (flare rate, flare energy, flare duration, and flare amplitude). We found 1662 short-cadence flares, 363 of which have a long-cadence counterpart with flare energies of up to $5.6cdotp10^{34}$erg. The flare amplitude, duration, and frequency derived from the short-cadence light curves differ significantly from those derived from the long-cadence data. The analysis of the short-cadence light curves results in a flare rate that is 4.6 times higher than the long-cadence data. We confirm the abrupt change in activity level in the rotation-activity relation at a critical period of ~10d when photometric activity diagnostics are used. This change is most drastic in the flare duration and frequency for short-cadence data. Our flare studies revealed that the highest flare rates are not found among the fastest rotators and that stars with the highest flare rates do not show the most energetic flares. We found that the superflare frequency ($Egeq5cdotp10^{34}$erg) for the fast-rotating M stars is twice higher than for solar like stars in the same period range. By fitting the cumulative FFD, we derived a power-law index of $alpha=1.84 pm 0.14$, consistent with previous M dwarf studies and the value found for the Sun.
200 - B. Stelzer 2013
We systematically study the X-ray and ultraviolet emission of a subsample of M dwarfs from a recent proper-motion survey, selecting all M dwarfs within 10pc to obtain a nearly volume-limited sample (~90% completeness). Archival ROSAT, XMM-Newton and GALEX data are combined with published spectroscopic studies of Halpha emission and rotation to obtain a broad picture of stellar activity on M dwarfs. We make use of synthetic model spectra to determine the relative contributions of photospheric and chromospheric emission to the ultraviolet flux. We also analyse the same diagnostics for a comparison sample of young M dwarfs in the TWHya association (~10Myrs). We find that generally the emission in the GALEX bands is dominated by the chromosphere but the photospheric component is not negligible in early-M field dwarfs. The surface fluxes for the Halpha, near-ultraviolet, far-ultraviolet and X-ray emission are connected via a power law dependence. We present here for the first time such flux-flux relations involving broad-band ultraviolet emission for M dwarfs. For given spectral type the activity indices, defined as flux ratio between the activity diagnostic and the bolometric flux of the star, display a spread of 2-3 dex which is largest for M4 stars. The mean activity index for fast rotators, likely representing the saturation level, decreases from X-rays over the FUV to the NUV band and Halpha, i.e. the fractional radiation output increases with atmospheric height. The comparison to the ultraviolet and X-ray properties of TWHya members shows a drop of nearly three orders of magnitude for the luminosity in these bands between ~10Myr and few Gyrs age. A few young field dwarfs (< 1Gyr) in the 10pc sample bridge the gap indicating that the drop in magnetic activity with age is a continuous process. The slope of the age decay is steeper for the X-ray than for the UV luminosity.
298 - M. McLean , 2011
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previous studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit super-saturation in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a factor of 3 compared to objects with vsini<10 km/s. When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro~10^-3; in X-rays and H-alpha there is clear saturation at Ro<0.1, with super-saturation beyond M7. A similar trend is observed for the radio surface flux (L_rad/R^2) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L_rad/L_bol and L_rad/R^2 as a function of Ro from G to L dwarfs indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully-convective dwarfs. The fact that not all rapid rotators are detected in the radio provides additional support to the idea of dual dynamo states.
Recent progress in observational studies of magnetic activity in M dwarfs urgently requires support from ideas of stellar dynamo theory. We propose a strategy to connect observational and theoretical studies. In particular, we suggest four magnetic configurations that appear relevant to dwarfs from the viewpoint of the most conservative version of dynamo theory, and discuss observational tests to identify the configurations observationally. As expected, any such identification contains substantial uncertainties. However the situation in general looks less pessimistic than might be expected. Several identifications between the phenomenology of individual stars and dynamo models are suggested. Remarkably, all models discussed predict substantial surface magnetic activity at rather high stellar latitudes. This prediction looks unexpected from the viewpoint of our experience observing the Sun (which of course differs in some fundamental ways from these late-type dwarfs). We stress that a fuller understanding of the topic requires a long-term (at least 15 years) monitoring of M dwarfs by Zeeman-Doppler imaging.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا