Do you want to publish a course? Click here

On the Electron Agyrotropy during Rapid Asymmetric Magnetic Island Coalescence in Presence of a Guide Field

62   0   0.0 ( 0 )
 Added by Emanuele Cazzola
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the properties of the electron velocity distribution during island coalescence in asymmetric reconnection with and without guide field. In a previous study, three main domains were identified, in the case without guide field, as X-, D- and M-regions featuring different reconnection evolutions {Cazzola et al. 2015). These regions are also identified here in the case with guide field. We study the departure from isotropic and gyrotropic behavior by means of different robust detection algorithms proposed in the literature. While in the case without guide field these metrics show an overall agreement, when the guide field is present a discrepancy in the agyrotropy within some relevant regions is observed, such as at the separatrices and inside magnetic islands. Moreover, in light of the new observations from the Multiscale MagnetoSpheric mission, an analysis of the electron velocity phase-space in these domains is presented.

rate research

Read More

A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this set-up neglects both the formation of the current sheet and the coupling between the diffusion region and a larger system that supplies the magnetic flux. Recent studies of magnetic island merging, which naturally include these features, have found that ion kinetic physics is crucial to describe the reconnection rate and global evolution of such systems. In this paper, the effect of a guide field on reconnection during island merging is considered. In contrast to the earlier current sheet studies, we identify a limited range of guide fields for which the reconnection rate, outflow velocity, and pile-up magnetic field increase in magnitude as the guide field increases. The Hall-MHD fluid model is found to reproduce kinetic reconnection rates only for a sufficiently strong guide field, for which ion inertia breaks the frozen-in condition and the outflow becomes Alfvenic in the kinetic system. The merging of large islands occurs on a longer timescale in the zero guide field limit, which may in part be due to a mirror-like instability that occurs upstream of the reconnection region.
A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across the current layer in addition to density and magnetic field gradient. We find that none of X-point, flow stagnation point, and local current density peak coincide. Current and energy balance analyses around the flow stagnation point and current density peak show consistently that current dissipation is associated with the divergence of nongyrotropic electron pressure. Furthermore, the same pressure terms, when combined with shear-type gradients of the electron flow velocity, also serve to maintain local thermal energy against convective losses. These effects are similar to those found also in symmetric magnetic reconnection. In addition, we find here significant effects related to the convection of current, which we can relate to a generalized diamagnetic drift by the nongyrotropic pressure divergence. Therefore, only part of the pressure force serves to dissipate the current density. However, the prior conclusion that the role of the reconnection electric field is to maintain the current density, which was obtained for a symmetric system, applies here as well. Finally, we discuss related features of electron distribution function in the EDR.
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earths dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earths polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.
The spreading of the X-line out of the reconnection plane under a strong guide field is investigated using large-scale three-dimensional (3D) particle-in-cell (PIC) simulations in asymmetric magnetic reconnection. A simulation with a thick, ion-scale equilibrium current sheet (CS) reveals that the X-line spreads at the ambient ion/electron drift speeds, significantly slower than the Alfven speed based on the guide field $V_{Ag}$. Additional simulations with a thinner, sub-ion-scale CS show that the X-line spreads at $V_{Ag}$ (Alfvenic spreading), much higher than the ambient species drifts. An Alfvenic signal consistent with kinetic Alfven waves develops and propagates, leading to CS thinning and extending, which then results in reconnection onset. The continuous onset of reconnection in the signal propagation direction manifests as Alfvenic X-line spreading. The strong dependence on the CS thickness of the spreading speeds, and the X-line orientation are consistent with the collisionless tearing instability. Our simulations indicate that when the collisionless tearing growth is sufficiently strong in a thinner CS such that $gamma/Omega_{ci}gtrsimmathcal{O}(1)$, Alfvenic X-line spreading can take place. Our results compare favorably with a number of numerical simulations and recent magnetopause observations. A key implications is that the magnetopause CS is typically too thick for Alfvenic X-line spreading to effectively take place.
We analyze the development and influence of turbulence in three-dimensional particle-in-cell simulations of guide-field magnetic reconnection at the magnetopause with parameters based on observations of an electron diffusion region by the Magnetospheric Multiscale (MMS) mission. Along the separatrices the turbulence is a variant of the lower hybrid drift instability (LHDI) that produces electric field fluctuations with amplitudes much greater than the reconnection electric field. The turbulence controls the scale length of the density and current profiles while enabling significant transport across the magnetopause despite the electrons remaining frozen-in to the magnetic field. Near the X-line the electrons are not frozen-in and the turbulence, which differs from the LHDI, makes a significant net contribution to the generalized Ohms law through an anomalous viscosity. The characteristics of the turbulence and associated particle transport are consistent with fluctuation amplitudes in the MMS observations. However, for this event the simulations suggest that the MMS spacecraft were not close enough to the core of the electron diffusion region to identify the region where anomalous viscosity is important.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا