Do you want to publish a course? Click here

Spectroscopic Evolution of Disintegrating Planetesimals: Minutes to Months Variability in the Circumstellar Gas Associated with WD 1145+017

79   0   0.0 ( 0 )
 Added by Seth Redfield
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among ten different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn, Fe, Ni. Broad circumstellar gas absorption with a velocity spread of 225 km/s is detected, but over the course of a year blue shifted absorption disappears while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median tau approximately 2). We discuss simple models of an eccentric disk coupled with magnetospheric accretion to explain the basic observed characteristics of these high resolution and high signal-to-noise observations. Variability is detected on timescales of minutes in the two most recent observations, showing a loss of redshifted absorption for tens of minutes, coincident with major transit events and consistent with gas hidden behind opaque transiting material. This system currently presents a unique opportunity to learn how the gas causing the spectroscopic, circumstellar absorption is associated with the ongoing accretion evidenced by photospheric contamination, as well as the transiting planetary material detected in photometric observations.



rate research

Read More

More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.
WD 1145+017 is a unique white dwarf system that has a heavily polluted atmosphere, an infrared excess from a dust disk, numerous broad absorption lines from circumstellar gas, and changing transit features, likely from fragments of an actively disintegrating asteroid. Here, we present results from a large photometric and spectroscopic campaign with Hubble, Keck , VLT, Spitzer, and many other smaller telescopes from 2015 to 2018. Somewhat surprisingly, but consistent with previous observations in the u band, the UV transit depths are always shallower than those in the optical. We develop a model that can quantitatively explain the observed bluing and the main findings are: I. the transiting objects, circumstellar gas, and white dwarf are all aligned along our line of sight; II. the transiting object is blocking a larger fraction of the circumstellar gas than of the white dwarf itself. Because most circumstellar lines are concentrated in the UV, the UV flux appears to be less blocked compared to the optical during a transit, leading to a shallower UV transit. This scenario is further supported by the strong anti-correlation between optical transit depth and circumstellar line strength. We have yet to detect any wavelength-dependent transits caused by the transiting material around WD 1145+017.
281 - Marie Karjalainen 2018
Multiple long and variable transits caused by dust from possibly disintegrating asteroids were detected in light curves of WD 1145+017. We present time-resolved spectroscopic observations of this target with QUCAM CCDs mounted in the Intermediate dispersion Spectrograph and Imaging System at the 4.2-m William Herschel Telescope in two different spectral arms: the blue arm covering 3800-4025 {AA} and the red arm covering 7000-7430 {AA}. When comparing individual transits in both arms, our observations show with 20 {sigma} significance an evident colour difference between the in- and out-of-transit data of the order of 0.05-0.1 mag, where transits are deeper in the red arm. We also show with > 6 {sigma} significance that spectral lines in the blue arm are shallower during transits than out-of-transit. For the circumstellar lines it also appears that during transits the reduction in absorption is larger on the red side of the spectral profiles. Our results confirm previous findings showing the u-band excess and a decrease in line absorption during transits. Both can be explained by an opaque body blocking a fraction of the gas disc causing the absorption, implying that the absorbing gas is between the white dwarf and the transiting objects. Our results also demonstrate the capability of EMCCDs to perform high-quality time resolved spectroscopy of relatively faint targets.
We obtained high-speed photometry of the disintegrating planetesimals orbiting the white dwarf WD1145+017, spanning a period of four weeks. The light curves show a dramatic evolution of the system since the first observations obtained about seven months ago. Multiple transit events are detected in every light curve, which have varying durations(~3-12min) and depths (~10-60%). The time-averaged extinction is ~11%, much higher than at the time of the Kepler observations. The shortest-duration transits require that the occulting cloud of debris has a few times the size of the white dwarf, longer events are often resolved into the superposition of several individual transits. The transits evolve on time scales of days, both in shape and in depth, with most of them gradually appearing and disappearing over the course of the observing campaign. Several transits can be tracked across multiple nights, all of them recur on periods of ~4.49h, indicating multiple planetary debris fragments on nearly identical orbits. Identifying the specific origin of these bodies within this planetary system, and the evolution leading to their current orbits remains a challenging problem.
67 - P. Izquierdo 2018
WD 1145+017 is currently the only white dwarf known to exhibit periodic transits of planetary debris as well as absorption lines from circumstellar gas. We present the first simultaneous fast optical spectrophotometry and broad-band photometry of the system, obtained with the Gran Telescopio Canarias (GTC) and the Liverpool Telescope (LT), respectively. The observations spanned $5.5$ h, somewhat longer than the $4.5$-h orbital period of the debris. Dividing the GTC spectrophotometry into five wavelength bands reveals no significant colour differences, confirming grey transits in the optical. We argue that absorption by an optically thick structure is a plausible alternative explanation for the achromatic nature of the transits that can allow the presence of small-sized ($simmu$m) particles. The longest ($87$ min) and deepest ($50$ per cent attenuation) transit recorded in our data exhibits a complex structure around minimum light that can be well modelled by multiple overlapping dust clouds. The strongest circumstellar absorption line, Fe II $lambda$5169, significantly weakens during this transit, with its equivalent width reducing from a mean out-of-transit value of $2$ AA to $1$ AA in-transit, supporting spatial correlation between the circumstellar gas and dust. Finally, we made use of the Gaia Data Release 2 and archival photometry to determine the white dwarf parameters. Adopting a helium-dominated atmosphere containing traces of hydrogen and metals, and a reddening $E(B-V)=0.01$ we find $T_mathrm{eff}=15,020 pm 520$ K, $log g=8.07pm0.07$, corresponding to $M_mathrm{WD}=0.63pm0.05 mbox{$mathrm{M}_{odot}$}$ and a cooling age of $224pm30$ Myr.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا